We are interested in the structure of human behavior, broadly conceived. This interest has taken us into several specific research domains, including test anxiety, social anxiety, and self-regulation of health-related behavior. But in some respects the specific explorations in diverse areas of work have been in the service of a more general interest in the structure of behavior.

The questions underlying this interest are very abstract: What is the most useful way to think about how people create actions from intentions and desires? Once people have decided to do something, how do they stay on course? What processes account for the existence of feelings, as people make their way through the world? At the fore of our thinking over the past two decades is the idea that behavior is a self-regulatory event. It is an attempt to make something happen in action that is already in mind. This general idea forms the basis of this chapter.

This chapter is organized in terms of a series of conceptual themes that we've found useful. Some of them have been central in our thinking for a long time; others have been taken up only more recently. We start simple, with basic ideas about the nature of behavior and the organization of some of the processes by which we believe behavior is regulated. We then turn to consideration of emotion—how we think it is created and how certain classes of affects differ from each other. This is followed by a discussion of
the fact that people sometimes are unable to do what they set out to do, and what follows from that problem. The next sections are more speculative. They deal with dynamic systems and catastrophe theory as models for understanding behavior and how these models may contribute to the ways in which people such as ourselves think about self-regulation.

I. BEHAVIOR IS GOAL DIRECTED AND FEEDBACK CONTROLLED

The view we take on behavior begins with the concept of goal and the process of feedback control. We see these ideas as intimately linked. Our focus on goals is very much in line with a growing reemergence of goal constructs (Austin & Vancouver, 1996; Elliott & Dweck, 1988; Miller & Read, 1987; Pervin, 1989). A variety of labels are used in this literature: for example, current concern (Klinger, 1975, 1977), personal strivings (Emmons, 1986), life task (Cantor & Kihlstrom, 1987), and personal project (Little, 1983). In all these theories, there is room for individualization. That is, a life task can be achieved in many ways. People choose paths that are compatible with other aspects of their life situations (many current concerns must be managed simultaneously) and other aspects of their personalities.

Two goal constructs that differ somewhat from those named thus far are the possible self (Markus & Nurius, 1986) and the self-guide (Higgins, 1987, 1996). These constructs are intended to bring a dynamic quality to conceptualization of the self-concept. In contrast to traditional views, but consistent with other goal frameworks, possible selves are future oriented. They concern how people think of their unrealized potential, the kind of person they might become. Self-guides similarly reflect dynamic aspects of the self-concept.

Theorists who use these various terms—and others—have their own emphases (for broader discussions, see Austin & Vancouver, 1996; Carver & Scheier, 1998), but many points are the same. All include the idea that goals energize and direct activities; these views implicitly (and sometimes explicitly) convey the sense that goals give meaning to people’s lives (cf. Baumeister, 1989). In each theory there is an emphasis on the idea that understanding the person means understanding the person’s goals. Indeed, in the view represented by these theories, it is often implicit that the self consists partly of the person’s goals and the organization among them.

A. FEEDBACK LOOPS

How are goals used in behaving? Part of our answer is that goals serve as reference values for feedback loops. A feedback loop, the unit of cybernetic control, is a system of four elements in a particular organization
(cf. Miller, Galanter, & Pribram, 1960): an input function, a reference
value, a comparator, and an output function (Figure 1).

An input function is a sensor. We will treat this function as equivalent
to perception. The reference value is a second bit of information (i.e., in
addition to the input function). We'll treat the reference values in the
loops we're interested in as goals. A comparator is a device that makes
comparisons between input and reference value. The comparison yields
one of two outcomes: either the values being compared are discriminably
different from one another or they're not. The comparison can vary in
sensitivity. Sometimes very small discrepancies are detected; sometimes
only quite large ones.

Following the comparison is an output function. We will treat this as
equivalent to behavior, although sometimes the behavior is internal. If the
comparison yields a "no difference," the output function remains whatever
it was. If the comparison yields "discrepancy," the output changes.

There are two kinds of feedback loops, corresponding to two kinds of
goals (Figure 2). In a negative or discrepancy-reducing loop, the output
function is aimed at diminishing or eliminating any detected discrepancy
between input and reference value. It yields conformity of input to
reference. This conformity is seen in the attempt to approach or attain a
valued goal.

In this view, behavior isn't for the sake of behavior, but occurs in the
service of creating and maintaining conformity of input to standard.
Behavior can create conformity, but disturbances from outside also can
create conformity. Although disturbances often change conditions ad-

FIGURE 1 Schematic depiction of a feedback loop, the basic unit of cybernetic control. In such a loop, a sensed value is compared to a reference value or standard, and adjustments are made in an output function (if necessary) to shift the sensed value in the direction of the standard.
PART I. GENERAL THEORIES AND MODELS OF SELF-REGULATION

versely (enlarging a discrepancy with the reference value), they also can change conditions favorably (diminishing a discrepancy). In the first case, recognition of a discrepancy prompts a change in output, as always. In the second case, the disturbance preempts the need for an output adjustment, because the system sees no discrepancy. Thus no output adjustment occurs.

The second kind of feedback loop is a positive or discrepancy-enlarging loop (Figure 2). The reference value here is not one to approach, but one to avoid. Think of this as an "anti-goal." A psychological high-level example is a feared possible self. Other, more concrete examples would be traffic tickets, public ridicule, and being fired from your job. A positive loop senses present conditions, compares them to the anti-goal, and tries to enlarge the discrepancy. For example, a rebellious adolescent who wants to be different from his parents senses his own behavior, compares it to his parents' behavior, and tries to make his own behavior as different from theirs as possible.

The action of discrepancy-enlarging processes in living systems is typically constrained in some way by discrepancy reducing loops (Figure 3). To put it differently, avoidance behaviors often lead into approach behaviors. An avoidance loop creates pressure to increase distance from the anti-goal. The movement away occurs until the tendency to move away is captured by the influence of an approach loop. This loop then serves to pull the sensed input into its orbit. The rebellious adolescent, trying to be different from his parents, soon finds other adolescents to conform to, all of whom are deviating from their parents.

Our use of the word orbit in the last paragraph suggests a metaphor that may be useful for anyone to whom these concepts do not feel terribly
intuitive. You might think of feedback processes as metaphorically equivalent to gravity and antigravity. The negative feedback loop exerts a kind of gravitational pull on the input it is controlling, pulling that input closer to its ground zero. The positive loop has a kind of antigravitational push, moving sensed values ever farther away. Don’t forget, though, that this is a metaphor. More is involved here than a force field.

It’s worth noting that the situations people confront are often more complex than the one shown in Figure 3. Often there are several potential values to move toward. For this reason, one positive value won’t always capture or constrain all the avoidance attempts. Thus, if several people are trying to deviate from a mutually disliked reference point, they may diverge from one another. For example, one adolescent trying to escape from his parents’ values may gravitate to membership in a rock band, whereas another may gravitate to the army. Presumably the choice of what direction to approach will depend, in part, on the fit between the available reference values and the person’s preexisting values and, in part, on the direction the person took initially to escape from the anti-goal.

Some years ago we argued that the comparator of a psychological feedback loop is engaged by increases in self-focused attention (Carver,
1979; Carver & Scheier, 1981, 1990). Indeed, the similarity in function between manipulations of self-focus and the elements of the feedback loop was one thing that attracted us to the feedback model in the first place. Self-focused attention leads to more comparisons with salient standards (Scheier & Carver, 1983), and it enhances behavioral conformity to salient standards. The standards have ranged from instructions to personal attitudes to subjective norms (for reviews, see Carver & Scheier, 1981, 1998). On the avoidance side, self-focus has led to more rejection of attitudinal positions held by a negative reference group (Carver & Humphries, 1981) and to stronger reactance effects (Carver & Scheier, 1981).

The literature of self-awareness is not the only one that fits the picture of feedback loops, however (Carver & Scheier, 1998). For example, social comparison processes can easily be viewed in these terms: People use upward comparisons to help them pull themselves toward desired goals; people use downward comparisons to help them force themselves farther away from (upward from) those who are worse off than they are.

B. REEMERGENT INTEREST IN APPROACH AND AVOIDANCE

Our interest in the embodiment of these two different kinds of feedback processes in behavior is echoed in the recent reemergence of interest in two modes of regulation in several other literatures. One of these derives from a group of theories that are biological in focus. The research base of these theories ranges from animal conditioning and behavioral pharmacology (Gray, 1982, 1987b) to studies of human brain activity (Davidson, 1992a, 1992b; Tomarken, Davidson, Wheeler, & Doss, 1992). The theories incorporate the idea that two systems (sometimes more) are involved in regulation of behavior.

One system, handling approach behavior, is called the behavioral activation system (Cloninger, 1987; Fowles, 1980), behavioral approach system (Gray, 1987a, 1990), behavioral engagement system (Depue, Krauss, & Spoont, 1987), or behavioral facilitation system (Depue & Iacono, 1989). The other, dealing with withdrawal or avoidance, is usually called the behavioral inhibition system (Cloninger, 1987; Gray, 1987a, 1990), although it is sometimes termed a withdrawal system (Davidson, 1992a, 1992b). The two systems are generally regarded as independent, because they’re believed to be regulated by different brain mechanisms.

Another literature with a dual-motive theme derives from self-discrepancy theory (Higgins, 1987, 1996; Higgins, Bond, Klein, & Strauman, 1986). This theory holds that people relate their perceptions of their actual selves to several self-guides, particularly ideals and oughts. Ideals are qualities the person desires to embody—aspirations, hopes, positive wishes for the self. Living up to an ideal means attaining something desired. An ideal is clearly an approach goal. We believe it is purely an approach goal.
Oughts, in contrast to ideals, are defined by a sense of duty, responsibility, or obligation. An ought is a self that one feels compelled to be, rather than intrinsically desires to be. The ought self is a positive value in the sense that people try to conform to it. However, living up to an ought also implies acting to avoid a punishment—self-disapproval or the disapproval of others. In our view, oughts are more complex structurally than ideals. Oughts intrinsically imply both an avoidance process and an approach process. Their structure thus resembles what was illustrated earlier in Figure 3. Recent work has demonstrated the avoidance aspect of the dynamics behind the ought self (Higgins & Tykocinski, 1992).

II. HIERARCHICALITY AMONG GOALS

Another theme in the translation of goals into behavior reflects the obvious fact that some goals are broader in scope than others. How to think about the difference in breadth is not always easy to put your finger on. Sometimes it's a difference in temporal commitment. Sometimes, though, it's more than that. It's a difference in the goal's level of abstraction.

A. PREMISE: GOALS CAN BE DIFFERENTIATED BY LEVELS OF ABSTRACTION

The notion that goals differ in their level of abstraction is easy to illustrate. You might have the goal of being an honorable person or a self-sufficient person. These goals are at a relatively high level of abstraction. You also may have the goal of avoiding a person at work who gossips or of making dinner for yourself. These are all at a lower level of abstraction. The first set concerns being a particular kind of person, the second set concerns completing a particular kind of action. You could also think of goals that are even more concrete than the latter set, such as the goal of walking quietly to your office and closing the door without being heard or the goal of cutting vegetables into a pan. These goals (which some would call plans or strategies instead of goals) are closer to specifications of individual acts than were the second set just described, which were more summary statements about the desired outcomes of intended action patterns.

How should we think about this difference in abstraction among goals? As you may have noticed, the examples used to illustrate concrete goals relate directly to the examples of abstract goals. We did this to point out that abstract goals are linked to concrete goals in a hierarchy of levels of abstraction. William Powers (1973) argued that a hierarchical organization of feedback loops underlies the self-regulation of behavior. Because
feedback loops imply goals, this argument also constituted a model of hierarchical structuring among the goals involved in creating action.

His general line of thinking ran as follows: In a hierarchical organization of feedback systems, the output of a high-level system consists of the resetting of reference values at the next lower level of abstraction. To put it differently, higher order or superordinate systems "behave" by providing goals to the systems just below them. The reference values specified are more concrete and restricted as one moves from higher to lower levels. Control at each level reflects regulation of a quality that contributes to the quality controlled at the next higher level. Each level monitors input at a level of abstraction appropriate to its own functioning, and each level adjusts output so as to minimize its discrepancies. It is not assumed that one processor handles functions at various levels of abstraction. Rather, structures at various levels handle their concerns simultaneously.

Powers focused particularly on low levels of abstraction. He said much less about the levels that are of most interest to us, except to suggest labels for several levels whose existence makes intuitive sense. Programs are activities involving conscious decisions at various points. Sequences, the next level down, run off directly once cued. The level above programs is principles, qualities that are abstracted from (or implemented by) programs. These are the kinds of qualities represented by trait labels. Powers gave the name "system concepts" to the highest level he considered. Goal representations there include the idealized overall sense of self, relationship, or group identity.

A simple way of portraying this hierarchy is in Figure 4. This diagram omits the loops of feedback processes, using lines to indicate only the links among goal values. The lines imply that moving toward a particular lower goal contributes to the attainment of some higher goal (or even several at once). Multiple lines to a given goal indicate that several lower-level action qualities can contribute to its attainment. As indicated previously, there are goals to "be" a particular way and goals to "do" certain things (and at lower levels, goals to create physical movement).

B. ACTION IDENTIFICATION

Although the Powers hierarchy per se has not been studied empirically, another theory that strongly resembles it—Vallacher and Wegner's (1985) action identification theory—has been. This model is framed in terms of how people think about their actions, but it also conveys the sense that how people think about their actions is informative about the goals by which they are guiding their actions.

People can identify a given action in many different ways, and the act identifications can vary in level of abstraction. High-level identifications
are abstract (e.g., becoming more cultured), lower-level identifications get more and more concrete (e.g., attending a ballet, listening to sounds, and watching people move while you sit quiet and still). Low-level identifications tend to convey a sense of "how" an activity is done; high-level identifications tend to convey a sense of "why."

Although the Vallacher and Wegner (1985) model is hierarchical, it doesn't specify what qualities define various levels. It simply assumes that where there is a potential emergent property there is the potential for differing levels of identification. On the other hand, the examples used to illustrate the theory tend to map onto the levels of the Powers hierarchy: sequences of acts, programs of actions (with variations of smaller-scale and larger-scale programs), and principles of being. Thus, work on action identification tends to suggest the reasonableness of these particular levels of abstraction in thinking about behavior.

C. MULTIPLE PATHS TO HIGH-LEVEL GOALS, MULTIPLE MEANINGS IN CONCRETE ACTION

Although the hierarchy we are discussing is in some ways very simple, it has implications for several issues in thinking about behavior (for a broader treatment, see Carver & Scheier, 1998). It is implicit here that goals at any given level can often be achieved by a variety of means at
lower levels. This flexibility is particularly apparent at upper levels of the hierarchy, where the goals are abstract. This permits one to address the fact that people sometimes shift radically the manner in which they try to reach a goal when the goal itself has not changed. This happens commonly when the emergent quality that is the higher order goal is implied in several lower order activities. For example, a person can be helpful by writing a donation check, picking up discards for a recycling center, volunteering for a charity, or holding a door open for someone else.

Just as a given goal can be obtained via multiple pathways, so can a specific act be performed in the service of diverse goals. For example, you could buy someone a gift to make him or her feel good, to repay a kindness, to put him or her in your debt, or to satisfy a perceived holiday-season role. Thus, a given act can have strikingly different meanings, depending on the purpose it's intended to serve. This is an important subtheme of this view on behavior: Behavior can be understood only by identifying the goals to which behavior is addressed. This isn't always easy to do, either from an observer's point of view (cf. Read, Druian, & Miller, 1989) or from the actor's point of view.

D. GOAL IMPORTANCE: GOALS AND THE SELF

Another point made by the notion of hierarchical organization concerns the fact that goals are not equivalent in their importance. The higher you go into the organization, the more fundamental to the overriding sense of self are the qualities encountered. Thus, goal qualities at higher levels would appear to be intrinsically more important than those at lower levels.

Goals at lower levels are not necessarily equivalent to one another in importance, however. Just as it's sometimes hard to tell what goal underlies a given behavior, it can also be hard to tell from a behavior how important is the goal that lies behind it. In a hierarchical system there are at least two ways in which importance accrues to a concrete goal. The more directly a concrete action contributes to attainment of some highly valued goal at a more abstract level, the more important is that concrete action. Second, an act that contributes to the attainment of several goals at once is more important than an act that contributes to the attainment of only one goal.

Relative importance of goals returns us to the concept of self. In contemporary theories the self-concept has several aspects: one is the structure of knowledge about your history; another is knowledge about who you are now; another is the self-guides or images of potential selves used to guide movement from the present into the future (which may also be working models). A broad implication of this sort of theory is that the self is partly the person's goals.
III. FEEDBACK CONTROL AND CREATION OF AFFECT

We shift now to another aspect of human self-regulation: emotion. Here we add a layer of complexity to the feedback model which differs greatly from the complexity represented by hierarchically. Again the fundamental organizing principle is feedback control, but now the control is over a different quality.

What are feelings and what makes them exist? Many have analyzed the information that feelings provide and situations in which affect arises (see, e.g., Frijda, 1986; Lazarus, 1991; Ortony, Clore, & Collins, 1988; Roseman, 1984; Scherer & Ekman, 1984). The question we address here is slightly different: What is the internal mechanism by which feelings arise?

A. THEORY

We have suggested that feelings arise as a consequence of a feedback process (Carver & Scheier, 1990). This process operates simultaneously with the behavior-guiding function and in parallel to it. One way to describe this second function is to say it's checking on how well the behavior loop is doing at reducing its discrepancies. Thus, the input for this second loop is a representation of the rate of discrepancy reduction in the action system over time. (We focus first on discrepancy-reducing loops, turning later to enlarging loops.)

We find an analogy useful here. Because action implies change between states, consider behavior analogous to distance. If the action loop deals with distance, and if the affect-relevant loop assesses the progress of the action loop, then the latter loop is dealing with the psychological equivalent of velocity, the first derivative of distance over time. To the extent this analogy is meaningful, the perceptual input to this loop should be the first derivative over time of the input used by the action loop.

We don't believe this input creates affect by itself, because a given rate of progress has different affective consequences under different circumstances. As in any feedback system, this input is compared against a reference value (cf. Frijda, 1986, 1988). In this case, the reference is an acceptable or desired rate of behavioral discrepancy reduction. As in other feedback loops, the comparison checks for a deviation from the standard. If there is one, the output function changes.

We suggest that the result of the comparison process at the heart of this loop (the error signal generated by the comparator) is manifest phenomenologically in two forms: one is a hazy and nonverbal sense of expectancy-confidence or doubt; the other is affect, feeling—a sense of positiveness or negativeness.
B. RESEARCH EVIDENCE

At least a little evidence has accumulated to support the idea that affect originates in a velocity function. Hsee and Abelson (1991), who came independently to this idea, reported two studies of velocity and satisfaction. In one, subjects read descriptions of paired hypothetical scenarios and indicated which one they would find more satisfying. For example, they chose whether they would be more satisfied if their class standing had gone from the 30th percentile to the 70th over the past 6 weeks or if it had done so over the past 3 weeks.

Some comparisons were of positive outcomes; some negative. Given positive outcomes, subjects preferred improving to a high outcome over a constant high outcome; they preferred a fast velocity over a slow one; and they preferred fast brief changes to slower larger changes. When the change was negative (e.g., salaries got worse), subjects preferred a constant low salary to a salary that started high and fell to the same low level; they preferred slow falls to fast falls; and they preferred large slow falls to small fast falls.

We conducted a study that conceptually replicates aspects of these findings, but with an event that was personally experienced rather than hypothetical (Lawrence, Carver, & Scheier, 1999). We manipulated success feedback on an ambiguous task over an extended period. The patterns of feedback converged such that block 6 was identical for all subjects at 50% correct. Subjects in a neutral condition had 50% on the first and last block, and 50% average across all blocks. Others had positive change in performance, starting poorly and gradually improving. Others had negative change, starting well and gradually worsening. All rated their mood before starting and again after block 6 (which they did not know ended the session). Those whose performances were improving reported better moods; those whose performances were deteriorating reported worse moods, compared to those with a constant performance.

Another study that appears to bear on this view of affect, although not having this purpose in mind, was reported by Brunstein (1993). It examined subjective well being among college students over the course of an academic term as a function of several perceptions, including perception of progress toward goals. Of particular interest at present, progress at each measurement point was strongly correlated with concurrent well being.

C. CRUISE CONTROL MODEL

Ours is essentially a "cruise control" model of affect. That is, the system we've postulated functions much the same as the cruise control on a car. If you're going too slowly toward some goal in your behavior, negative affect arises. You respond by putting more effort into your action, trying to speed
up. If you’re going faster than you need to, positive affect arises and you coast. A car’s cruise control is very similar. You come to a hill, which slows you down. Your cruise control responds by feeding the engine more gas to bring the speed back up. If you come across the crest of a hill and roll downhill too fast, the system pulls back on the gas and drags the speed back down.

The analogy is intriguing in part because it concerns an electromechanical regulation of the very quality we believe the affect system is regulating: velocity. It is also intriguing to realize that this analogy incorporates a similar asymmetry in the consequences of deviating from the set point. That is, both in your car’s cruise control system and in your behavior, going too slow requires investment of greater effort and resources. Going too fast does not. It requires only pulling back on resources. That is, your cruise control doesn’t apply your brakes, it just cuts back on the gasoline. In this way it permits you to coast back to your velocity set point. In the same fashion, you don’t respond to positive affect by trying to make it go away, but just by easing off.

Does positive affect lead people to withdraw effort? There is a little information on this, but not much. Melton (1995) found that people in a good mood performed worse than control subjects on syllogisms. A variety of ancillary data led him to the conclusion that the people in good moods did worse because they were expending less effort. To us, this looks like coasting.

D. AFFECT FROM DISCREPANCY-ENLARGING LOOPS

When we began this section we said we would restrict ourselves at first to discrepancy-reducing loops. Thus far we’ve done that, dealing only with issues that arise in the context of approach. Now we turn to attempts to distance oneself from a point of comparison, attempts to not be or not do, discrepancy-enlarging loops.

It should be apparent from our earlier discussion that behavior toward avoidance goals is just as intelligible as behavior toward approach goals. But what about the affective accompaniments to avoidance loops? The affect theory described here rests on the idea that positive affect results when a behavioral system is making rapid progress in doing what it is organized to do. The systems considered thus far are organized to close discrepancies. There’s no obvious reason, however, why the principle shouldn’t apply just as well to systems with the opposite purpose. If the system is making rapid progress doing what it’s organized to do, the result should be positive affect. If the system is doing poorly at what it’s organized to do, the result should be negative affect.

That much would seem to be fully comparable across the two types of systems. We see, however, a difference in the affect qualities involved (see
Two sorts of affect-creating systems and the affective dimensions we believe arise from the functioning of each. Discrepancy-reducing systems are presumed to yield affective qualities of sadness or depression when progress is below standard and happiness or elation when progress is above standard. Discrepancy-enlarging systems are presumed to yield anxiety when progress is below standard and relief or contentment when progress is above standard.

Figure 5). In each case there's a positive pole and a negative pole, but the positives aren't quite the same, nor are the negatives.

Our view of this difference derives partly from the insights of Higgins and his colleagues (Higgins, 1987, 1996). Following their lead, we suggest that the affect dimension relating to discrepancy reducing loops is (in its purest form) the dimension that runs from depression to elation. The affect dimension that relates to discrepancy-enlarging loops is (in its purest form) the dimension from anxiety to relief or contentment. As Higgins and his colleagues note, dejection-related and agitation-related affect may take several forms, but these two dimensions capture the core qualities behind them. The connections drawn in Figure 5 between affect quality and type of system are compatible not just with the Higgins model, but also with certain other theories. For example, Roseman (1984, p. 31) has argued that joy and sadness are related to appetitive (moving-toward) motives, whereas relief and distress are related to aversive (moving-away-from) motives.

E. MERGING AFFECT AND ACTION

How does the mechanism creating affect influence action? A more basic question (which takes us to the same end) is this: We've treated affect as the error signal of a feedback loop, but what's the output function of that loop? If the input function is a perception of rate of progress, the output function must be an adjustment in rate of progress.

Some adjustments are straightforward—go faster. Sometimes it's less so. The rates of many "behaviors" (higher order activities) aren't defined by the literal pace of physical action. Rather, they're defined in terms of
choices among potential actions, or even potential programs of action. For example, increasing your rate of progress on a reading assignment may mean choosing to spend a weekend working rather than playing. Increasing your rate of kindness means choosing to do an action that reflects that value. Thus, adjustment in rate must often be translated into other terms, such as concentration or reallocation of time and effort.

It should be apparent, however, that the action system and the rate system work in concert with one another. Both are involved in the flow of action. They influence different aspects of the action, but both always are involved.

It's interesting that the functions that we've just described are roughly comparable to two functions typically ascribed to motivation. In effect, we seem to have arrived at saying that the action loop handles most of what is sometimes called the directional function of motivation (the choice of an action from among many options, keeping an action on the track intended), and that the affect loop is handling the intensity function of motivation (the vigor, enthusiasm, effort, concentration, or thoroughness with which the action is pursued). Our linking of affect with the intensity aspect of motivation is a consequence of structural assumptions we began with, rather than a principled decision. However, this link is certainly consistent with statements of many theorists who have emphasized the intimate connection between emotion and motivation.

This view of the nature and origin of affect raises a number of issues—far more than we can address here. We limit ourselves to a few of the more provocative and interesting ones.

F. IS THIS REALLY A FEEDBACK SYSTEM?

Our view on affect is that it results from a comparison process in a feedback loop. This view has a counterintuitive implication. If affect is created the way we say it is, it is a signal that the rate of progress isn't right and should be adjusted. This implies that although the organism tries to minimize pain, it does not, in general, try to maximize pleasure.

Minimizing pain is straightforward. Negative feelings reflect a negative discrepancy in rate, indicating a problem. Things aren't moving forward fast enough. The normal response is to try harder. If this happens, the negative affect ceases to exist. Thus, people try to minimize pain.

Maximizing pleasure is trickier. Positive feelings reflect a positive discrepancy in rate. This means things are going better than they need to, and the experience feels good. To a system whose goal is controlling rate, however, discrepancies are to be reduced. If there really is a feedback loop of the sort we have proposed, neither negative nor positive affect is a state the system wants to see. Either quality of affect (either deviation from the
standard) would represent an "error" and lead to changes in output that would reduce it.

If this is truly a feedback system, an overshoot of the reference value should lead to a self-corrective attempt to return to the reference value. Put more concretely, this view argues that people who exceed the desired rate of progress will slow subsequent effort in this domain. They are likely to "coast." The result in subjective experience would be that the positive affect from the overshoot is not sustained for very long.

Why should there be a natural tendency that would cause positive affect to be short lived? A plausible basis lies in the idea that behavior is hierarchically organized and has multiple current concerns. People typically are working toward several goals more or less simultaneously. To the extent that movement toward goal attainment is more rapid than expected in one domain, it lets the person shift effort toward strivings in another domain at no cost. To continue an unnecessarily rapid pace in the first domain may increase positive affect, but by diverting efforts from other goals, it may increase the potential for negative affect in other domains.

G. SHIFTS IN STANDARDS

Reference values in this system can differ across categories of behavior, and they can shift through time and experience. That is, as people accumulate experience in a given domain, adjustments can occur in the pacing they expect and demand of themselves. There is a recentering of the system around the past experience by changing the reference value.

Sometimes the adjustment is downward, toward less stringent pacing. One consequence of this is a more favorable balance of positive to negative affect across a given time span. In other cases, the adjustment is upward. This has the side effect of decreasing the potential for positive affect and increasing the potential for negative affect.

These changes don't happen quickly or abruptly. Shifting the reference value downward is not the first response when you have trouble keeping up a demanding pace. First you try harder to keep up. Only more gradually, if this fails, does the standard shift to accommodate. Similarly, an upward shift in reference value is not the immediate response when your rate exceeds the standard. The more typical response is to coast for a while. Only when the overshoot is frequent does the standard shift upward.

We believe that such adjustments in standard occur automatically, but slowly. Such adjustments themselves appear to reflect a self-corrective feedback process, as the person reacts to insufficient challenge by taking on a more demanding pace, and reacts to too much challenge by scaling back (see Figure 6). This feedback process is slower than the ones we've focused on thus far. Rather, there is a gradually accumulating shift.
It is also of interest (and once again counterintuitive) that these shifts in reference value (and the resultant effects on affect) imply a mechanism within the organism that functions to actively prevent the too frequent occurrence of positive feeling, as well as the too frequent occurrence of negative feeling. That is, the (bidirectional) shifting of the rate criterion over time would tend to control pacing of behavior in such a way that affect continues to vary in both directions around neutral, roughly the same as it had before.

Such an arrangement for changing the standard thus would not result in maximization of pleasure and minimization of pain. Rather, the affective consequence would be that the person experiences more or less the same range of variation in affective experience over extended periods of time and circumstances (cf. Myers & Diener, 1995). The organization as a whole would function as a gyroscope serving to keep us floating along within the framework of the affective reality we’re familiar with. It would provide for a continuous recalibration of the feeling system across changes in situation. To use a different image, it would repeatedly shift the balance point.
of a psychic teeter-totter, so that rocking in both directions remains possible.

H. COMPARISON WITH BIOLOGICAL MODELS
OF BASES OF AFFECT

It is useful to compare this model with the group of biologically focused theories we mentioned earlier. The theories are quite similar to one another in many ways, but in other ways they differ. These theories all incorporate the idea that two systems (or more) are involved in the regulation of behavior. Many assume further that the two systems underlie affect. In situations with cues of impending reward, the activity of the approach system creates positive feelings. In situations with cues of impending punishment, the avoidance system creates feelings of anxiety.

Data from a variety of sources fit this picture. Of particular interest is work by Davidson and collaborators, involving EEG recordings assessing changes in activation in response to affective inducing stimuli. Among the findings are these: Subjects exposed to films inducing fear and disgust (Davidson, Ekman, Saron, Senulis, & Friesen, 1990) and confronted with possible punishment (Sobotka, Davidson, & Senulis, 1992) show elevations in right frontal activation. In contrast, subjects with a chance to obtain reward (Sobota et al., 1992), subjects presented with positive emotional adjectives (Cacioppo & Petty, 1980), and smiling 10-month-olds viewing their approaching mothers (Fox & Davidson, 1988) show elevations in left frontal activation. From findings such as these, Davidson (1992a, 1992b) concluded that neural substrates for approach and withdrawal systems (and thus positive and negative affect) are located in the left and right frontal areas of the cortex, respectively.

The logic of these models thus far resembles the logic of our model. At this point, however, theories diverge. The question on which they diverge concerns the regulatory processes involved in, and affects that result from, failure to attain reward and successful avoidance of punishment. Gray (1987b, 1990) holds that the avoidance system is engaged by cues of punishment and cues of frustrative nonreward. It thus is responsible for negative feelings in response to either of these types of cues. Similarly, he holds that the approach system is engaged by cues of reward or cues of escape from (or avoidance of) punishment. It thus is responsible for positive feelings in response to either of these types of cues. In his view, then, each system creates affect of one hedonic tone (positive in one case, negative in the other), regardless of its source (see Figure 7). This view is consistent with a picture of two unipolar affective dimensions, each linked to a distinct behavioral system. A similar position has been taken by Lang, Bradley, and Cuthbert (1992).
Our position is different. It argues for an approach system and an avoidance system, in which—in each case—affect is a product of either doing well or doing poorly. Thus, it implies two bipolar dimensions: one tied to approach, the other to avoidance (Figure 7). We think the frustration and eventual depression that result from failure to attain desired goals involve the approach system (for similar predictions, see Clark, Watson, & Mineka, 1994, p. 107; Cloninger 1988, p. 103). Sadness and depression involve reduced activity in the approach system, as the pursuit of goals diminishes. A parallel line of reasoning suggests that relief, contentment, tranquility, and serenity relate to the avoidance rather than the approach system, reflecting low levels of activity in that system.

Less information exists about neurophysiological bases of these affects than about anxiety and happiness. With regard to relief–tranquility, we know of no data at all. With respect to depression, limited evidence exists. Henriques and Davidson (1991) found that clinically depressed persons had less activation in left frontal areas than nondepressed controls. In contrast, there was no evidence of a difference in right frontal activation. This pattern has since been replicated by Allen, Iacono, Depue, and Arbisi (1993). Recall that Davidson viewed baseline measures as representing susceptibility rather than ambient affect per se. Thus, this finding tenta-

![Figure 7: Gray's view of affect (horizontal groupings) ties positive affects to the effects of a behavioral activation system (BAS), as results of occurrence of reward and avoidance of punishment. It ties negative affects to the effects of a behavioral inhibition system (BIS), as results of frustrative nonreward and occurrence of punishment. Our view (vertical groupings, as in Figure 5) ties the dimension of elation–depression to an approach system and the dimension of anxiety–relief to an avoidance system, each of which thus has properties somewhat different from those assumed by Gray. Note. From On the Self-Regulation of Behavior, by C. S. Carver and M. F. Scheier, 1998, New York: Cambridge University Press; Copyright 1998 by Cambridge University Press. Reprinted with permission.](image)
tively seems to suggest that depressed persons are vulnerable to depression through deficits in their approach system. This set of findings seems quite compatible with our position.

IV. CONFIDENCE AND DOUBT, PERSISTENCE AND GIVING UP

In describing the genesis of affect, we suggested that one mechanism yields two subjective readouts: affect, and a hazy sense of confidence versus doubt. We turn now to a consideration of confidence and doubt—expectancies for the immediate future. We focus here on the consequences of this sense of confidence and doubt.

We've often suggested that when people experience adversity in trying to move toward their goals, they periodically experience an interruption of efforts, to assess in a more deliberative way the likelihood of a successful outcome (e.g., Carver & Scheier, 1981, 1990). In effect, people suspend the behavioral stream, step outside it, and evaluate in a more deliberated way than occurs while acting. This may happen once or often. It may be brief or it may take a long time. In this assessment, people presumably depend heavily on memories of prior outcomes in similar situations. They may also consider such things as additional resources they might bring to bear (cf. Lazarus, 1966) or alternative approaches to the problem. People use social comparison information (Wills, 1981; Wood, 1989) and attributional analyses of prior events (Wong & Weiner, 1981).

How do these thoughts influence the expectancies that emerge? In some cases, when people retrieve “chronic” expectancies from memory, the information already is expectancies, summaries of products of previous behavior. For some cases, however, people bring to mind possibilities for the situation’s evolution. For these possibilities to influence expectancies, their consequences must be evaluated. We suggest they are briefly played through mentally as behavioral scenarios (cf. Taylor & Pham, 1996). This should lead to conclusions that influence the expectancy. (“If I try approaching it this way instead of that way, it should work better.” “This is the only thing I can see to do, and it will just make the situation worse.”)

It seems reasonable that this mental simulation engages the same mechanism as handles the affect creation process during actual overt behavior. When your progress is temporarily stalled, playing through a scenario that is confident and optimistic yields a higher rate of progress than is currently being experienced. The affect loop thus yields a more optimistic outcome assessment than is being derived from current action. If the scenario is negative and hopeless, it indicates a further reduction in progress and the loop yields further doubt.
A. ENGAGEMENT VERSUS GIVING UP

The expectancies that result, whatever their source, are reflected in behavior (Figure 8). If expectations are for a successful outcome, the person returns to effort toward the goal. If doubts are strong enough, the result is an impetus to disengage from further effort and potentially from the goal itself (Carver & Scheier, 1981, 1990, 1998, 1999; see also Klinger, 1975; Kukla, 1972; Wortman & Brehm, 1975). This theme—divergence in behavioral response as a function of expectancies—is an important one, applying to a surprisingly broad range of literatures (see Chapter 11 of Carver & Scheier, 1998).

Sometimes the disengagement that follows from doubt is overt, but disengagement sometimes takes the form of mental disengagement—off-task thinking, daydreaming, and so on. Although this sometimes can be useful (self-distraction from a feared stimulus may permit anxiety to abate), it also can create problems. If there is time pressure, mental disengagement can impair performance, as time is spent on task-irrelevant thoughts. Consistent with this, interactions between self-focus and expectancies have been shown for measures of performance (Carver, Peterson, Follansbee, & Scheier, 1983; Carver & Scheier, 1982).

Often mental disengagement can not be sustained, because situational cues force a reconfrontation of the task. In such cases, the result is a phenomenology of repetitive negative rumination, which often focuses on

FIGURE 8 Flow-chart depiction of self-regulatory possibilities, indicating that action sometimes continues unimpeded toward goal attainment, that obstacles to goal attainment sometimes induce a sequence of evaluation and decision making, and that if expectancies for eventual success are sufficiently unfavorable, the person may disengage from further effort. *Note.* From *On the Self-Regulation of Behavior,* by C. S. Carver and M. F. Scheier, 1998, New York: Cambridge University Press; Copyright 1998 by Cambridge University Press. Reprinted with permission.
self-doubt and perceptions of inadequacy. This cycle is both unpleasant and performance impairing.

A number of writers—both from an earlier tradition of cognitive-attentional theories of anxiety (e.g., Sarason, 1975; Wine, 1971, 1980) and some more recent (Ingram, 1990)—have equated this phenomenology of negative rumination with the term “self-focus.” We would argue that this label is misleading (see also Pyszczynski, Greenberg, Hamilton, & Nix, 1991). Why? Because self-focus does not always produce interference. As described earlier, self-focus is in many cases associated with task focus, as the experience of attention inward engages the feedback process underlying effort. Indeed, among confident subjects in the studies just mentioned, this is what occurred even under conditions of adversity. Self-focus led to better task effort, as manifest both in overt behavior and in contents of consciousness. Only among doubtful subjects did self-focus lead to performance impairment or to negative rumination.

B. IS DISENGAGEMENT GOOD OR BAD?

Is the disengagement tendency good or bad? The answer is that it is both and neither. On the one hand, disengagement (at some level, at least) is an absolute necessity. Disengagement is a natural and indispensable part of self-regulation. If we are ever to turn away from efforts at unattainable goals, if we are ever to back out of blind alleys, we must be able to disengage, to give up and start over somewhere else.

The importance of disengagement is particularly obvious with regard to concrete, low-level goals: We must be able to remove ourselves from literal blind alleys and wrong streets, give up plans that have become disrupted by unexpected events, even spend the night in the wrong city if we’ve missed the last plane home. The tendency is also important, however, with regard to more abstract and higher-level goals. A vast literature attests to the importance of disengaging and moving on with life after the loss of close relationships (e.g., Orbuch, 1992; Stroebe, Stroebe, & Hansson, 1993; Weiss, 1988). People sometimes must even be willing to give up values that are deeply embedded in the self, if those values create too much conflict and distress in their lives.

As with most processes in self-regulation, however, the choice between continued effort and giving up presents opportunities for things to go awry. It’s possible to stop trying prematurely, thereby creating potentially serious problems for oneself (Carver & Scheier, 1998). It’s also possible to hold onto goals too long and prevent oneself from taking adaptive steps toward new goals. However, both continued effort and giving up are necessary parts of the experience of adaptive self-regulation. Each plays an important role in the flow of behavior.
3. STRUCTURE OF BEHAVIORAL SELF-REGULATION

C. HIERARCHICALITY AND IMPORTANCE CAN IMPEDE DISENGAGEMENT

Disengagement sometimes is precluded by situational constraints. However, another, broader aspect of this problem stems from the idea that behavior is hierarchically organized, with goals increasingly important higher in the hierarchy and thus harder to disengage from.

Presumably disengaging from concrete values is often easy. Lower order goals vary, however, in how closely they are linked to values at a higher level, and thus how important they are. To disengage from low-level goals that are tightly linked to higher-level goals causes discrepancy enlargement at the higher level. These higher order qualities are important, even central to one's life. One cannot disengage from them, or disregard them, or tolerate large discrepancies between them and current reality without reorganizing one's value system (Greenwald, 1980; Kelly, 1955; McIntosh & Martin, 1992; Millar, Tesser, & Millar, 1988). In such a case, disengagement from even very concrete behavioral goals can be quite difficult.

Now recall again the affective consequences of being in this situation. The desire to disengage was prompted by unfavorable expectancies. These expectancies are paralleled by negative affect. In this situation, then, the person experiences negative feelings (because of an inability to make progress toward the goal) and is unable to do anything about the feelings (because of an inability to give up). The person simply stews in the feelings that arise from irreconcilable discrepancies. This kind of situation—commitment to unattainable goals—seems a sure prescription for distress.

D. WATERSHEDS, DISJUNCTIONS, AND BIFURCATIONS AMONG RESPONSES

An issue that bears some further mention is the divergence of the behavioral and cognitive responses to favorable versus unfavorable expectancies that is part of this model. We've long argued for a psychological watershed among responses to adversity (Carver & Scheier, 1981). One set of responses consists of continued comparisons between present state and goal, and continued efforts. The other set consists of disengagement from comparisons and quitting. Just as rainwater falling on a mountain ridge ultimately flows to one side of the ridge or the other, so do behaviors ultimately flow to one of these sets or the other.

Our initial reason for taking this position stemmed largely from the several demonstrations that self-focused attention creates diverging effects on both information seeking and behavior, as a function of expectancies of success (Figure 9). We aren't the only ones to have emphasized a disjunction among responses, however. A number of others have done so, for reasons of their own.
An early model that emphasized the idea of a disjunction in behavior was proposed by Kukla (1972). Another such model is the reactance—helplessness integration of Wortman and Brehm (1975): the argument that threats to control produce attempts to regain control and that perceptions of loss of control produce helpless. Brehm and his collaborators (Brehm & Self, 1989; Wright & Brehm, 1989) have more recently developed an approach to task engagement that resembles that of Kukla (1972), although their way of approaching the description of the problem is somewhat different. Not all theories about persistence and giving up yield this dichotomy among responses. The fact that some do, however, is interesting. It becomes more so a little bit later on.

V. DYNAMIC SYSTEMS AND HUMAN BEHAVIOR

Recent years have seen the emergence in psychology of new (or at least newly prominent) ideas about how to conceptualize natural systems. Several labels attach to these ideas: chaos, dynamic systems theory, complexity, catastrophe theory. A number of introductions to various aspects of this body of thought have been written, some of which include applications to psychology (e.g., Brown, 1995; Gleick, 1987; Thelen & Smith, 1994; Vallacher & Nowak, 1994, 1997; Waldrop, 1992). In this section we sketch some themes that are central to this way of thinking and indicate places
where we think the themes apply meaningfully to subjects of our own interest.

Dynamic systems theory (or chaos theory) is deterministic (despite the contrary implication of the word chaos). It holds that the behavior of a system reflects the forces operating on (and within) it. It also emphasizes that the behavior of a complex system over anything but a brief time is very hard to predict. Why?

A. NONLINEARITY

One reason is that the system's behavior may be influenced by the forces operating on and within it in nonlinear ways. Thus, the behavior of the system—even though highly determined—can appear random. This determinism in principle but unpredictability in practice underlies the label chaotic.

Many people are used to thinking of relationships between variables as linear. Dynamic-systems thinking asserts that many relationships are not linear. Familiar examples of nonlinear relationships are step functions (ice turning to water and water turning to steam as temperature increases), threshold functions, and floor and ceiling effects. Other examples of nonlinearity are interactions (Figure 10). In an interaction, the effect of one predictor on the outcome differs as a function of the level of a second predictor. Thus the effect of the first predictor on the outcome is not linear. The second predictor is thereby acting as a control parameter—a factor "that hold[s] potential for changing the intrinsic dynamics of a system" (Vallacher & Nowak, 1997).

![Figure 10](image)

FIGURE 10 Interactions indicate that the effect of one variable differs as a function of the level of another variable. On the left is the interaction between self-focus and expectancy that was shown in Figure 9. This indicates that the effect of self-focus is nonlinear (right panel). Its impact reverses at some point along the distribution of the variable confidence–doubt. Note. From “Themes and issues in the Self-Regulation of Behavior” by C. S. Carver & M. F. Scheier, in R. S. Wyer, Jr. (Ed.), *Advances in Social Cognition*, 1999, Mahwah, NJ: Erlbaum. Copyright 1999 by Lawrence Erlbaum Associates. Reprinted with permission.
Obviously the interaction in Figure 10 is far from unique. Indeed, many psychologists think in terms of interactions much of the time. Threshold effects and interactions are nonlinearities that many people take for granted, though perhaps not labeling them as such. Looking intentionally for nonlinearities, however, reveals others. For example, many psychologists now think many developmental changes are dynamic rather than linear (Goldin-Meadow & Alibali, 1995; Siegler & & Jenkins, 1989; Ruble, 1994; Thelen, 1992, 1995; van der Maas & Molenaar, 1992).

B. SENSITIVE DEPENDENCE ON INITIAL CONDITIONS

Nonlinearity is one reason why it's hard to predict complex systems. Two more reasons why prediction over anything but the short term is difficult is that you never know all the influences on a system, and the ones you do know you never know with total precision. What you think is going on may not be quite what is going on. That difference, even if it's small, can be very important.

This theme is identified in the dynamic systems literature with the phrase sensitive dependence on initial conditions. This phrase means that a very small difference between two conditions of a system can lead to divergence, and ultimately the absence of any relation between the paths taken later on. The idea is (partly) that a small initial difference causes a difference in what the systems encounter next, which yields slightly different influences on the systems, producing slightly different outcomes (Lorenz, 1963). Through repeated iterations, the systems diverge, eventually leading the two systems to very different pathways. After a surprisingly brief period, they no longer have any noticeable relation to one another.

How does the notion of sensitive dependence on initial conditions relate to human behavior? Most generally, it suggests that a person's behavior will be hard to predict over a long period except in general terms. For example, although you might be confident that Joe usually eats lunch, you wouldn't be able to predict as well what time, where, or what he'll eat on the second Friday of next month. This does not mean Joe's behavior is truly random or unlawful (cf. Epstein, 1979). It just means that small differences between the influences you think are affecting him and the influences that are actually taking place will result in moment-to-moment behavior that's unpredicted.

This principle also holds for prediction of your own behavior. There's evidence that people don't plan very far into the future (Anderson, 1990, pp. 203–205), even experts (Gobet & Simon, 1996). People seem to have goals in which the general form of the goal is sketched out, but only a few program-level steps toward it have been planned. Even attempts at relatively thorough planning appear to be recursive and "opportunistic,"
changing—sometimes drastically—when new information becomes known (Hayes-Roth & Hayes-Roth, 1979).

The notion of sensitive dependence on initial conditions provides an explanation for this. It is pointless (and maybe even counterproductive) to plan too far ahead too fully (cf. Kirschenbaum, 1985), because chaotic forces in play (forces that are hard to predict because of nonlinearities and sensitive dependence) can render much of the planning irrelevant. Thus, it makes sense to plan in general terms, chart a few steps, get there, reassess, and plan the next bits. This seems a perfect illustration of how people implicitly take chaos into account in their own lives.

C. PHASE SPACE, ATTRACTORS, AND REPELLERS

Another set of concepts important in dynamic-systems thinking are variations on the terms phase space and attractor (Brown, 1995; Vallacher & Nowak, 1997). A phase diagram is a depiction of the behavior of a system over time. The system’s states are plotted along two (sometimes three) axes, with time displayed as the progression of the line of the plot, rather than on an axis of its own. A phase space is the array of states that a system occupies across a period of time. As the system changes states over time, it traces a trajectory within its phase space—a path of the successive states it occupies across that period.

Phase spaces often contain regions called attractors. Attractors are areas the system approaches, occupies, or tends toward more frequently than other areas. Attractors seem to exert a metaphorical gravitational pull on the system, bringing the system into proximity to them. Each attractor has what is called a basin, the attractor’s region of attraction. Trajectories that enter the basin tend to move toward that attractor (Brown, 1995).

There are several kinds of attractors, some simple, others more complex. In a point attractor, all trajectories converge onto some point in phase space, no matter where they begin (e.g., body temperature). Of greater interest are chaotic attractors. The pattern to which this term refers is an irregular and unpredictable movement around attraction points. The best known example is the Lorenz attractor (Figure 11), named for the man who first plotted it (Lorenz, 1963). It has two attraction zones. Plotting the behavior of this system yields a tendency to loop around both attractors, but unpredictably. Shifts in trajectory from one basin to the other seem random.

The behavior of this system displays sensitivity to initial conditions. A small change in starting point changes the specific path of motion entirely. The general tendencies remain the same—that is, the revolving around both attractors—but details such as the number of revolutions around one before deflection to the other, form an entirely different pattern. The
A trajectory over iterations shows this same sensitivity to small differences. As the system continues, it often nearly repeats itself, but never quite does, and what seem nearly identical paths can diverge abruptly, with one path leading to one attractor and the adjacent path leading to the other.

A phase space also contains regions called repellers, regions that are hardly ever occupied. Indeed, these regions seem to be actively avoided. That is, a minimal departure from the focal point of a repeller leads to a rapid escape from that region of phase space.

D. ANOTHER WAY OF PICTURING ATTRACTORS

The phase-space diagram gives a vivid visual sense of what an attractor "looks like" and how it acts. Another way that is often used to portray attractors is shown in Figure 12. In this view, attractor basins are basins or valleys in a surface (a more technical label for a basin is a local minimum). Repellers are ridges. This view assumes a metaphoric "gravitational" drift downward in the diagram, but other forces are presumed to be operative in all directions. (For simplicity, this portrayal usually is done as a two-dimen-
3. Structure of Behavioral Self-Regulation

Figure 12 Another way to portray attractors. (A) Attractor basins as valleys in a surface (local minima). The behavior of the system is represented as a ball. If the ball is in a valley (point 1 or 2), it is in an attractor basin and will tend to stay there unless disturbed. If the ball is on a ridge (between points 1 and 2), it will tend to escape its current location and move to an attractor. (B) A wider basin (point 1) attracts more trajectories than a narrower basin (point 2). A steeply sloping basin (point 2) attracts more abruptly any trajectory that enters the basin than does a more gradually sloping basin (point 1) (C). A system in which attractor point 1 is very stable and the others are less stable. It will take more energy to free the ball from attractor point 1 than from the others. (D) The system's behavior is energized, much as the shaking of a metaphoric tambourine surface, keeping the system's behavior in flux and less than completely captured by any particular attractor. Still, more shaking will be required to escape from attractor point 1 than attractor point 2. Note. From On the Self-Regulation of Behavior, by C. S. Carver and M. F. Scheier, 1998, New York: Cambridge University Press; Copyright 1998 by Cambridge University Press. Reprinted with permission.

sional drawing, but keep in mind that the diagram often assumes the merging of a large number of dimensions into the horizontal axis.)

The behavior of the system at a given moment is represented as a ball on the surface. If the ball is in a valley (points 1 and 2 in Figure 12A), it's in an attractor basin and will tend to stay there unless disturbed. If it's on a hill (between 1 and 2), any slight movement in either direction will cause it to escape its current location and move to an adjacent attractor.
A strength of this portrayal is that it does a good job of creating a sense of how attractors vary in robustness. The breadth of a basin indicates the diversity of trajectories in phase space that are drawn into it. The broader the basin (point 1, in Figure 12B), the more trajectories are drawn in. The narrower the basin (Figure 12B, point 2), the closer the ball has to come to its focal point to be drawn to it. The steepness of the valley indicates how abruptly a trajectory is drawn into it. The steeper the slope of the wall (Figure 12B, point 2), the more sudden is the entry of a system that encounters that basin.

The depth of the valley indicates how firmly entrenched the system is, once drawn into the attractor. Figure 12C represents a system of attractors with fairly low stability (most of the valleys are shallow). In Figure 12C, one attractor represents a stable situation (valley 1), whereas the others are less so. It will take a lot more “energy” to free the ball from valley 1 than from the others.

There’s a sense in which both breadth and depth suggest that a goal is important. Breadth does so because the system is drawn to the attractor from widely divergent trajectories. Depth does so because the system that’s been drawn into the basin tends to stay there.

A weakness of this picture, compared to a phase-space portrait, is that it isn’t as good at giving a sense of the erratic motion from one attractor to another in a multiple-attractor system. You can regain some of that sense of erratic shifting, however, if you think of the surface in Figure 12 as a tambourine, with a certain amount of shaking going on all the time (Figure 12D). Even a little shaking causes the ball to bounce around in its well, and may jostle it from one well to another, particularly if the attractors are not highly stable. An alternative would be to think of the ball as a jumping bean, hopping and bouncing. These two characterizations are analogous to jostling that comes from situational influences and jostling from internal dynamics, respectively.

E. GOALS AS ATTRACTORS

The themes of dynamic systems thinking outlined here have had several applications in personality-social and even clinical psychology (Vallacher & Nowak, 1997). An easy and intuitive application of the attractor concept to human behavior is to link it with the goal concept. Goals are points around which behavior is regulated. That is, people spend much of their time doing things that keep their behavior in close proximity to their goals. It seems reasonable to suggest, then, that a goal represents a kind of attractor. Furthermore, if an attractor represents a goal, it seems reasonable that a repeller represents an anti-goal.

The idea of attractors and trajectories within phase space provides an interesting complement and supplement to the idea that behavior is guided
by feedback processes regarding goals and anti-goals. However, we don’t think the ideas about phase space replace the ideas about feedback and goals. Rather, the ideas mesh. Each provides something the other lacks.

Movement toward a goal is not really an automatic gravitational drift, once the goal is identified (no matter how convenient that image). The feedback model provides a mechanism through which goal directed activity is managed, a mechanism that isn’t in the phase-space model. The phase-space model, however, suggests ways of thinking about how goals diverge and how people shift among multiple goals over time, issues that aren’t dealt with as easily in terms of feedback processes.

That is, think of the landscape of chaotic attractors, but think about there being many different basins attracting behavior rather than just two or three. This seems to capture rather well the sense of human behavior. Because no attractor basin in this system ever becomes a point attractor, behavior tends toward one goal, then another, never being completely captured by any goal. The person does one thing for a while, then something else. The goals are all predictable—in the sense that they all have an influence on the person over time—an influence that is highly predictable when aggregated across time. However, the shifts from one to another occur unpredictably (thus are chaotic).

VI. CATASTROPHE THEORY

Another set of ideas that has been around for a while but seems to be reemerging in influence is catastrophe theory, a mathematical model focusing on creation of discontinuities, bifurcations, or splittings (Brown, 1995; Saunders, 1980; Stewart & Peregoy, 1983; van der Maas & Molenaar, 1992; Woodcock & Davis, 1978; Zeeman, 1977). A catastrophe occurs when a small change in one variable produces an abrupt (and usually large) change in another variable.

An abrupt change implies nonlinearity or discontinuity. This focus on nonlinearity is one of several themes that catastrophe theory shares with dynamic systems theory, although the two bodies of thought have different origins (and, indeed, some view them as quite different from each other—see Chapter 2 of Kelso, 1995). The discontinuity that is the focus of catastrophe theory can be seen as reflecting “the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor” (Brown, 1995, p. 51).

Although our greatest interest in the themes of dynamic systems is in their application to the goal construct, several other possibilities have also been suggested. Treatment of these possibilities is beyond the scope of this chapter, however (for broader consideration see Carver & Scheier, 1998; Nowak & Vallacher, 1998; Vallacher & Nowak, 1994).
Though several types of catastrophe exist (Brown, 1995; Saunders, 1980; Woodcock & Davis, 1978), the one that has been considered most frequently regarding behavior is the *cusp catastrophe*, in which two control parameters influence an outcome. Figure 13 portrays its three-dimensional surface, where x and z are the control parameters and y is the outcome. At low values of z, the surface of the figure expresses a roughly linear relationship between x and y. As x increases, so does y. As z (the second control parameter) increases, the relationship between x and y becomes less linear. It first shifts toward something like a step function. With further increase in z, the x–y relationship becomes even more clearly discontinuous—the outcome is either on the top surface or on the bottom. Thus, changes in z cause a change in the way x relates to y.

Another theme that links catastrophe theory to dynamic systems is the idea of sensitive dependence on initial conditions. The cusp catastrophe model displays this characteristic nicely. Consider the portion of Figure 13 where z has low values and x has a continuous relation to y, the system's behavior. Points 1 and 2 on x are nearly identical, but not quite. As z increases and we follow the movement of these points forward on the surface, for a while they track each other closely, until suddenly they begin...
to be separated by the fold in the catastrophe. At higher levels of z, one track ultimately projects to the upper region of the surface, the other projects to the lower region. Thus, a very slight initial difference results in a substantial difference farther along.

A. HYSTERESIS

The preceding description also hinted at an interesting and important feature of a catastrophe known as *hysteresis*. There are several ways to get a handle on what this term means. A simple characterization is that at some levels of z, there's a kind of foldover in the middle of the x-y relationship. A region of x exists in which there is more than one value of y. Another way to characterize the hysteresis is that two regions of this surface are attractors and one is a repeller (Brown, 1995). This unstable area is illustrated in Figure 14. The dashed-line portion of Figure 14 that lies between values a and b on the x axis—the region where the fold is going backward—repels trajectories (Brown, 1995), whereas the areas near values c and d attract trajectories. To put it more simply, you can't be on the dashed part of this surface.

Yet another way of characterizing hysteresis is captured by the statement that the system's behavior depends on the system's recent history (Brown, 1995; Nowak & Lewenstein, 1994). That is, as you move into the zone of variable x that lies between points a and b in Figure 14, it matters

![Figure 14](image-url)

FIGURE 14 A cusp catastrophe exhibits a region of hysteresis (between values a and b on the x axis) in which x has two stable values of y (the solid lines) and one unstable value (the dotted line that cuts backward in the middle of the figure). The region represented by the dotted line repels trajectories, whereas the stable regions (those surrounding values c and d on the x axis) attract trajectories. Traversing the zone of hysteresis from the left of this figure results in an abrupt shift (at value b on the x axis) from the lower to the upper portion of the surface (right arrow). Traversing the zone of hysteresis from the right of this figure results in an abrupt shift (at value a on the x axis) from the upper to the lower portion of the surface (left arrow). Thus, the disjunction between portions of the surface occurs at two different values of x, depending on the starting point. *Note.* From *On the Self-Regulation of Behavior*, by C. S. Carver and M. F. Scheier, 1998, New York: Cambridge University Press, Copyright 1998 by Cambridge University Press. Reprinted with permission.
which side of the figure you’re coming from. If the system is moving from point c into the zone of hysteresis, it stays on the bottom surface until it reaches point b, where it jumps to the top surface. If the system is moving from d into the zone of hysteresis, it stays on the top surface until it reaches point a, where it jumps to the bottom surface.

B. SOME APPLICATIONS OF CATASTROPHE THEORY

How does catastrophe theory apply to the human behaviors of most interest to personality and social psychologists? Several applications of these ideas have been made in the past decade or so, and others seem obvious candidates for future study.

The first serious application of catastrophe theory by a social psychologist apparently came in an article published nearly two decades ago by Tesser (1980). He described there two potential influences on a romantic relationship: attraction toward the partner and social pressures against the partner (e.g., when the partner is the “wrong” race, social class, or religion). When social pressures are low, dating-related behavior is at the back plane of the catastrophe figure. The extent of dating activity shows a generally linear increase with attraction.

When social pressures against the relationship are high, however, dating-related behavior is at the forward plane of the figure. When attraction is low to moderate (z is low), the social pressure keeps dating activity low. When attraction (z) is high, the social pressure is resisted and dating activity is high. In the middle range of attraction, the behavior that emerges depends on the system’s prior history. When attraction that once was high fades, the model predicts that dating-related behavior will continue until (and unless) attraction slips too low. When attraction that once was low increases, the model predicts that dating-related behavior will remain low unless attraction increases beyond the region of hysteresis.

Other candidates for examination in terms of catastrophes are easy to find. Here are a few more: Consider latitudes of acceptance and rejection in persuasion. When a persuasive message deviates from the recipient’s opinion but remains within the opinion range that the recipient is willing to consider (the latitude of acceptance), it has a persuasive influence. If the message is too deviant (the latitude of rejection), it will be rejected out of hand. The fact that there’s a break between these two latitudes suggests a discontinuity. But is there also a region of hysteresis? Would an initially acceptable message continue to be seen as such, even when it actually had gone outside that range? Would an initially rejected message continued to be taken as such, even when it had shifted to be within the acceptable range?

Another potential application is suggested by Martin and Tesser’s (1996) analysis of rumination. They argued that rumination constitutes
implicit problem solving, which occurs in the service of an eventual discrepancy reduction. This argument leads to the further idea that there is a balance between action and rumination, such that they tend to occur in different circumstances. Action dominates when there are no obstacles or when obstacles are manageable. Rumination dominates when the action is fully thwarted. Presumably there is a grey area where each might go on. Again, an interesting question is whether this grey area displays hysteresis. Is a person who's stuck in rumination more likely to remain there when the situation changes to where action is more effective? Is a person who's struggling to overcome obstacles likely to keep struggling past the point where it would make more sense to step back and think things over?

C. EFFORT VERSUS DISENGAGEMENT

What we think is another potentially important application of the catastrophe concept concerns the bifurcation between engagement in effort and giving up. Earlier we pointed to a set of theories that assume such a disjunction (Brehm & Self, 1989; Kukla, 1972; Wortman & Brehm, 1975). In all those models (as in ours), there is a point at which effort seems fruitless and the person stops trying. Earlier we simply emphasized that the models all assumed a discontinuity. Now we look at the discontinuity more closely and suggest that the phenomena addressed by these theories may embody a catastrophe.

Figure 15 shows a slightly relabeled cross section of a cusp catastrophe, similar to what was seen earlier in Figure 14. This figure displays a region of hysteresis in the engagement versus disengagement function. In that region, where task demands are close to people's perceived limits to perform, there should be greater variability in effort or engagement, because some people are on the top surface of the catastrophe and others

![Figure 15](image-url)
are on the bottom surface. Some people would be continuing to exert efforts, at the same point where others would be exhibiting a giving-up response.

Recall that the catastrophe figure also conveys the sense that the history of the behavior matters. A person who enters the region of hysteresis from the direction of high confidence (who starts out confident but confronts many cues indicating otherwise) will continue to display efforts and engagement, even as the situational cues imply less and less basis for confidence. A person who enters that region from the direction of low confidence (who starts out doubtful but confronts cues indicating otherwise) will continue to display little effort, even as the situational cues imply more and more basis for confidence.

This model helps indicate why it can be so difficult to get someone with strong and chronic doubts about success in some domain of behavior to exert real effort and engagement in that domain. It also suggests why a confident person is so rarely put off by encountering difficulties in the domain where the confidence lies. To put it in terms of broader views about life in general, it helps to show why optimists tend to stay optimistic and pessimists tend to stay pessimistic, even when the current circumstances of the two sorts of people are identical (i.e., in the region of hysteresis).

Figure 16 shows a slightly simplified version of the Wortman and Brehm (1975) model (oriented horizontally to be on a scale that's directionally similar to that of Figure 15) and the Brehm and Self (1989) model (which, for this discussion, is the same as the Kukla, 1972, model). These functions both show bifurcations between two classes of response. As drawn by their authors, neither has a region of hysteresis. Is that feature—missing from the diagrams—present in the phenomena addressed by the theories? We think a plausible case can be made that it is.

We suspect that a person who enters the situation portrayed in the Wortman–Brehm model with a belief of no control will continue to show little effort even when control begins to emerge. We suspect that a person struggling with a threat to control will continue to struggle even when control is lost. These effects of behavioral history would create a hysteresis, rendering this function very similar to the catastrophe.

The Brehm and Self model (Figure 16B) differs in a number of ways from Figure 16A and from Figure 15, but we think a case can be made that a region of hysteresis may exist here as well. The critical issue here may be

2 It should be noted that the x axes of these various models do not represent quite the same variables, although the variables are related to one another. Perceived task difficulty influences confidence (Brehm & Self, 1989), as does perceived facility at the task (Kukla, 1972) and extent of threat to control (Wortman & Brehm, 1975). Although none of these variables is a complete determinant of confidence, they all are related to confidence closely enough to warrant our treating them as equivalent for the purposes of this exercise.
the ambiguity of the situation the person is facing. The figure assumes the person knows the point at which maximum effort is required, but this is unlikely to always be true. A person who begins with a task that's far too hard to perform won't engage in serious effort. But if the task changes so that success is now possible, how will the person know it, if only minimal effort is being exerted? Not knowing, why would the person try harder? A person who begins with a task that's challenging but doable will exert strong effort. But how will this person know if the task demands change so that they exceed his or her maximum effort, unless he or she continues to try? In short, it appears there is good potential here for a region of hysteresis.

Two further points about these figures. First, no one has studied the processes of effort and disengagement in a truly parametric manner that would allow plotting the full range of the figures. Most work on the
Wortman-Brehm (1975) model has chosen two points in the range of threat to control. Brehm, Wright, and co-workers have typically chosen three points on the range of task difficulty: easy, demanding-but-possible, and too hard to bother with. The exact shape of the function represented by these figures still is not well known.

Second, keep in mind that the catastrophe cross section (Figure 15) is the picture that emerges under catastrophe theory only once a clear region of hysteresis has begun to develop. Farther back, the catastrophe model is more of a step function. An implication is that it's important to engage the control variable that's responsible for bringing out the bifurcation in the catastrophe surface (that is, axis z in Figure 13). It may be that in research bearing on this set of issues, this variable is only at a low to moderate level. If so, the hysteresis would be less observable, even if the research procedures were otherwise suitable to observe it.

What is the control variable that induces the bifurcation? We think that in the motivational models under discussion—and perhaps much more broadly—the control parameter is importance. Tesser (1980) pointed to social pressure as a control variable. Social pressure is one force that can make a behavior or a decision important, but we think social pressure is only one of a broader set of pressures. Importance arises from several sources, but there is a common thread among events seen as important: They demand mental resources. We suspect that almost any strong pressure that demands resources (time pressure, self-imposed pressure) will induce similar bifurcating effects.

VII. CONCLUDING COMMENT

In this chapter we sketched a set of ideas that we think are important in conceptualizing human self-regulation. We believe that behavior is goal directed and feedback controlled, and that the goals underlying behavior form a hierarchy of abstractness. We believe that the experience of affect (and of confidence versus doubt) also arises from a process of feedback control, but a feedback process that takes into account more explicitly temporal constraints. We believe that confidence and doubt yield patterns of persistence versus giving up and that these two responses to adversity form a dichotomy in behavior. These ideas have been part of our work for some time.

We have also recently begun to consider some newer ideas, which we addressed in the latter parts of the chapter. In those sections we described ideas from dynamic systems theory and catastrophe theory, and suggested that they represent useful tools for the analysis and construal of behavior. Our view is that they supplement rather than replace the tools now in use (though not everyone will agree on this point). We see many ways in which
those ideas mesh with the ideas presented earlier, although space constraints limited us to discussing only a few of them.

In thinking about the structure of self-regulation, we have drawn on ideas from disparate sources. At the same time, however, we’ve tried to continue to follow the thread of the logical model from which we started. The result is an aggregation of principles that we think have a good deal to say about how behavioral self-regulation takes place. The conceptual model surely is not complete, and many avenues exist for further work. For example, although a few studies have provided evidence bearing on the affect portion of the model, the implications of those ideas thus far have been explored only superficially.

Another area of thought that certainly will receive further attention over the next few years comprises the ideas of dynamic systems and catastrophe theory. Many people are becoming intrigued by dynamic systems thinking and are exploring the implications of these ideas in several ways. Some people believe these conceptual tools, and the new angles they give us on the human experience, will force us to change not just the ways we conceptualize behavior, but also the ways we study behavior. Whether this will be true or not remains to be seen. The answer will be played out in the methods that people find to explore the ideas.

There are also some additional ideas—not discussed here—that we think are likely to receive further attention in the years to come. Some of these ideas come from connectionist models of thought, which are starting to have an influence on personality and social psychology (Anderson, 1995; Read, Vanman, & Miller, 1997; Sloman, 1996; Smith, 1996; Smolensky, 1988; Thagard, 1989). Other ideas of potentially great value come from the literature of robotics (Beer, 1995; Brooks & Stein, 1994; Maes, 1994). These literatures push thinking in a variety of directions beyond the ideas that were discussed in this chapter, injecting new ideas and fresh viewpoints (see Carver & Scheier, 1998, Chapter 17).

Finally, we believe that the ideas discussed in this chapter also have interesting implications for conceptualizing both problems in self-regulation and therapeutic behavior change (see Carver & Scheier, 1998). Although there was not space to consider such issues here in any detail, there are several ways in which the concepts addressed here bear on problems. For example, we suspect that many of the problems in people’s lives are, at their core, problems of disengagement versus engagement and the failure to disengage adaptively. As another example, it may be useful to conceptualize problems as being less-than-optimal adaptations in a multidimensional phase space, which require some jostling to bounce the person to a new attractor (Hayes & Strauss, 1998).

These are just some of the ways in which we think the ideas under discussion are likely to be explored in the immediate future. Doubtlessly there will be others. The next generation of attempts to understand the
self-regulation of human behavior can be expected to create an ever-evolving landscape of ideas, as has the current generation. There are sure to be some surprises, as well. We look forward to seeing them.

ACKNOWLEDGMENT

This chapter was adapted from more extensive discussions elsewhere (Carver & Scheier, 1998, 1999). Preparation of this chapter was facilitated by NCI grants CA64710 and CA64711.

REFERENCES

3. Structure of Behavioral Self-Regulation

3. **Structure of Behavioral Self-Regulation**

Psychologists have long recognized the importance of goals in understanding how our desires affect our specific actions. In defining a “desirable future state of affairs,” goals serve as concrete points of reference for directing our actions in fulfillment of our needs. Everyday self-regulation, however, involves the pursuit of many different goals. Indeed, our lives are frequently “juggling acts” of important but disparate everyday concerns such as getting enough sleep, teaching, and writing this chapter. Complicating self-regulatory matters further, psychologists have long appreciated that just as we have many different goals, we usually have more than one road to these psychological destinations (Heider, 1958; McDougal, 1923). For instance, many of us may have the intention of “staying healthy,” but have very different ways of pursuing this goal. On some days we may choose to play sports, but occasionally we may opt to work out or to run. Certainly the manner in which this goal is pursued can vary across different individuals and different situations, but whatever one’s particular preferences, we commonly are faced with a choice among a number of different activities, all of which are means to attain our health goal.

Clearly, goals can become associated with other goals and with a wide range of specific behaviors designed to bring about their attainment. Moreover, the number and strength of these associations can vary as a function of the specific goal or individual involved.
The notion that goals relate to each other and to a wide range of substitutable behaviors gives rise to a number of important self-regulatory issues such as (1) how these associations affect our commitment to any given goal, (2) how a specific attainment behavior, or means, is chosen among those associated with a specific goal, (3) how this behavior is experienced with respect to the goal, and finally (4) how it will be replaced with another behavior if it proves ineffectual for attaining the goal.

The purpose of this chapter, then, is to address these important self-regulatory issues by considering the basic ways in which goals and means can differ in their associations with each other. To illustrate these differences, we adopt a connectionist perspective by assuming that an individual's goals and means can be viewed as a network of cognitive associations that vary in complexity. We first describe how these goal networks may differ. That is, we examine the fundamental characteristics of goal networks. In doing so, we show how consideration of these structural properties differs from other current perspectives on goals, and may help shed additional light on the important self-regulatory challenges mentioned above. Finally, we consider why goal networks differ. We consider how individual differences in motivational orientation, goal content, and regulatory experience may influence the associations between goals and means.

I. A STRUCTURAL ANALYSIS OF GOAL NETWORKS

Goals are knowledge structures (Kruglanski, 1996) and, as such, should follow similar principles of acquisition, activation, change, and organization that have been articulated in reference to all knowledge structures regardless of content (e.g., Higgins, 1996). Like other knowledge structures, goals can vary in the number and strength of their connection to other knowledge structures. However, because goals represent a specific type of knowledge structure, one that defines a future positive state, they should come to be associated particularly with those constructs that facilitate their attainment (i.e., means).

For this reason, goals are commonly thought to be organized hierarchically, with relatively few abstract goals served by a larger number of concrete means, or subgoals (Miller, Galanter, & Pribram, 1960; Powers, 1973, 1989). These means are themselves served by lower order means, and this pattern of associations continues downward to levels below conscious control.

With this in mind, consider the hypothetical goal network depicted in Figure 1 in which goal 2, goal 3, and goal 4 are served by more concrete means. Activation of any goal is assumed to spread downward to lower
order means, defined as activities whose completion brings about goal attainment. The strength of the association between a given goal and means is defined as the likelihood that activation of the given goal will result in the use of the given means. It is assumed that the more likely the means is to lead to goal attainment, the stronger is the association created between the goal and the means.

We (Shah & Kruglanski, 1999b) tested this assumption in a recent study in which a computer program asked participants to describe four different attributes that they desired to possess. We regarded these attributes as goals to which our participants aspired. The participants were also asked to list one activity they could perform to attain each of the attributes. We regarded these as means to those particular goals. After completing the initial procedure, the computer prompted the participants to list all the activities they could think of that would help them possess each attribute-goal. Finally, participants completed a lexical decision procedure in which they were asked to determine whether or not a target word was an attribute or activity. Before making each determination, participants first saw a prime word for 3 seconds. The four attributes listed by the participant and the first attainment means listed for each attribute were randomly included in the presented set of prime and target words. The link between attribute and means could be assessed, then, by examining reaction times when the attribute was the prime for the means or the means was the prime for the attribute (see Figure 2). These times were found to be significantly quicker than reaction times when participants’ attributes
primed means unrelated to those attributes or participants' means primed their unrelated attributes. This finding is consistent with the notion that goals and means are cognitively associated with each other.

A. EQUIFINALITY AND THE GOALS–MEANS ASSOCIATION

As mentioned earlier and is evident in Figure 1, goals have the property of equifinality: that is, they typically can be attained through a number of different actions. In this respect, however, all goals are not created equal. Some (e.g., pleasing one's parents) may be attained readily by a wide variety of actions (e.g., behaving politely, doing well in school, excelling in athletics), whereas others (e.g., demonstrating intelligence) may be accomplished only through one class of behaviors (e.g., getting high grades in school). Figure 3 shows how differences in equifinality may be represented graphically.

Goals may vary not only in the number of different ways they can be attained, but in how strongly they invoke each particular means (i.e., the strength of their association with each available means). Yet, if one assumes that each available means is sufficient to attain the superordinate goal, the strength of the association between a goal and a means should decrease as more alternative means become available, holding other determinants of this association strength constant. We refer to this phenomenon as "means disassociation" because it suggests that a goal's association with a single means is weakened by the presence of other available means. Indeed, in the study described earlier, the attribute–means link also was found to be significantly negatively related to the average number of means listed for possessing each attribute. So the more subsequent attainment means listed for each attribute, the weaker the associa-
tion between the attribute and the first means listed ($F(1,41) = 5.2$, $p < .05$).

B. MULTIFINALITY AND THE MEANS–GOALS ASSOCIATION

Just as goals can have more than one means of attainment, any one means may serve more than one goal. We refer to this property as *multifinality*. Like equifinality, this property can vary as a function of motivational orientation, goal content, and one's past experiences with specific goals. The simple act of walking, for instance, can be viewed as a means of transportation in one context and a means of exercising in another. Alternatively, consider the significant psychological phenomenon of intergroup bias. Although many researchers have seen it as a means for attaining self-esteem, Shah, Kruglanski, and Thompson (1998) have found that it also may serve as a means for attaining cognitive closure: A favorable appreciation of one's reference group upholds the social reality to which it subscribes, thus promoting the sense of cognitive closure embodied in such reality. Figure 4 graphically illustrates how means may differ in their association with different goals.

Just as with the association of a single goal with several means, the number of associations between a single means and several goals should be negatively related to the strength of any single goal–means association. So, if one strongly associates the act of jogging with the goal of getting in shape, one may be less likely to consider it as a means for getting to school. This notion of "goal dissociation" refers to the weakening of association between an activity and a given goal due to its association with
other goals. To take an example from the intrinsic motivation literature, consider the well-studied phenomenon that offering a reward for engaging in an interesting activity can undermine subsequent motivation when the reward is removed (for reviews, see Deci, 1975; Deci & Ryan, 1985; Lepper, Greene, & Nisbett, 1973). From our structural perspective, linking an activity with a tangible reward may create an association between the activity and an extrinsic goal (e.g., a tangible reward) to the detriment of any prior association of the activity to other intrinsic goals, such as mastery or competence. When the tangible reward is ultimately withdrawn, the tendency to engage in the activity is reduced because the activity's original association with a given goal has been diminished. The work of Higgins, Lee, Kwon, and Trope (1995) suggests that this goal dissociation is not limited to situations involving the association of an activity with a new extrinsic goal. Goal dissociation may, in fact, occur even when both goals are intrinsic, suggesting that this phenomenon may have more to do with the strength of the association between goals and means as such rather than with differences in specific goal contents (see also Higgins & Trope, 1990).

C. "LATERAL" ASSOCIATIONS WITHIN GOAL NETWORKS

Finally, different goals can differ in their "lateral" associations with other goals and different means can differ in their lateral associations with other means. To illustrate the latter, think of the decision one may make about how to get home. Pondering whether to walk might lead (by dint of
prior association) to thoughts of jogging, but not so readily lead one to consider taking a cab, although all three are seen as means to travel.

Of course means may relate to each other indirectly via their common goal. With this in mind, one reason that means may differ in their relationship to each other is that they differ in the number of different goals they commonly serve. For instance, when trying to get home, walking and jogging may be related more directly to each other because they both additionally serve as means of "getting some fresh air."

As knowledge structures, however, means can differ also in their degree of direct association. Figure 5 illustrates this point graphically.

As discussed subsequently, such a direct or "lateral" degree of association between means may play a significant role in determining means substitution should one's original means fail to attain its purpose.

Of course goals also can differ in their direct associations with other goals. To the degree that this association is based on the fact that attainment of either goal would facilitate attainment of the other, this association should increase overall goal progress. However, as will be discussed, goals may be associated with each other for other reasons as well. As knowledge structures, they may be associated because they are semantically similar or because their activations commonly co-occur. The very different goals of relaxing and studying, for instance, may come to be associated if one commonly studies in the bedroom, thereby creating a situation in which the same situational cue that activates a goal to study also may activate a goal to rest. As we also discuss subsequently, the

![Figure 5 Differences in lateral associations.](image-url)
degree of association between goals can affect one's singular commitment to either goal by creating a situation of goal conflict.

In summary, then, we have suggested that goal networks differ (1) in the degree to which goals are directly associated with other goals and (2) with various attainment means. We have also proposed that these networks differ (3) in the degree to which means are directly associated with other means and (4) are associated with various goals. Having provided an initial sketch of some structural properties of goal networks and how they differ from other goal qualities, we now address their implications for a number of significant regulatory issues.

II. SELF-REGULATORY CONSEQUENCES OF GOAL NETWORK STRUCTURE

A. GOAL COMMITMENT

Is the association of goals with means an important determinant of goal commitment? As the work of Gollwitzer and his colleagues has shown (e.g., Gollwitzer & Brandstatter, 1997), the accessibility of an attainment means is a crucial determinant of whether one follows through with goal attainment. Some question remains, however, about the added benefit of multiple attainment means. Roese (1994) showed that after failing on a task, considering additive counterfactuals (i.e., different things one could have tried) increased subsequent performance on the same task. This suggests that although the presence of different means for goal attainment may decrease the likelihood that any one means will be used consistently, it may, in fact, increase overall goal commitment by raising the overall perceived likelihood of goal attainment. To test this idea, we (Shah & Kruglanski, 1999b) asked participants to list four attributes they would like to possess. Half were then asked to list three means for attaining the first two attributes and one means for attaining the remaining two. The other half reversed this order, listing one means for attaining their first two attributes and three means for their remaining two. All participants also rated the likelihood that they would possess all four attributes. Those attributes for which three means were requested subsequently were rated as significantly easier to attain than those attributes for which only one means was requested (see Figure 6). Thus, it appears that the salience of multiple attainment means reduces the perceived difficulty of attainment or the risk of failure.

On the other hand, the degree to which goal activation activates other goals, rather than means, should be detrimental to goal commitment, especially if these goals are in conflict with each other. To test this idea, we had participants complete a computer program that asked them to
perform a lexical decision task by determining whether a presented letter string was a word or not after first seeing a prime word. Randomly distributed among the set of prime words and target words, participants were presented with common attribute-goals, that is, goals most persons in our culture may subscribe to (e.g., of being "educated," "caring," "strong," and "outgoing"), and attainment means for these attributes (e.g., "study," "volunteer," "exercise," and "socialize"). All possible combinations of means and attributes as primes and targets were presented.

After completing the word recognition task, participants rated on a 9-point scale ranging from "not at all" to "extremely" the degree to which they would ideally like to possess each of the presented attributes and the extent to which they thought it was their duty or obligation to possess them. These two ratings were combined to form one overall measure of attribute commitment (see Table 1). The goal–means association was calculated by summing the times it took a participant to complete the lexical decision task with regard to a given mean: that is, to decide whether it was or was not a word when the prime word was an attribute that, a priori, had been thought to be facilitated by this mean. The goal–non-means association was calculated by summing the times to identify a means as a word when the prime word was an attribute that, a priori, had been thought not to be facilitated by this activity. Similarly, the goal–goal association was calculated by summing the times to identify an attribute goal as word when the prime word was another attribute goal. A regression analysis of these variables indicated that overall goal commitment was
TABLE 1 Partial Correlations of Goal–Goal Association and Goal–Mean Association on Goal Commitment for Normative Goals and Personal Goals

<table>
<thead>
<tr>
<th>Type of association</th>
<th>Normative goals</th>
<th>Personal goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal–goal</td>
<td>-.34*</td>
<td>-.37*</td>
</tr>
<tr>
<td>Goal–means</td>
<td>.44** (n = 47)</td>
<td>.34* (n = 49)</td>
</tr>
</tbody>
</table>

*p < .05.
**p < .01.

significantly positively related to the strength of the goal–means association, but negatively related to the goal–goal connection, suggesting that the degree of association between goals hinders commitment to any individual goal. A second study tested this same idea using participants’ own idiosyncratic goals and means, rather than common or normative goals and means as used in our previous study. In most other respects, however, the procedure was similar to the first study and a regression analysis of the same set of variables again indicated that overall goal commitment was positively related to the strength of the goal–means connection, but negatively related to the goal–goal connection.

Overall goal commitment, then, may depend not only on qualities of the goal itself, but also on the strength of its relationship to other goals and to other means. A strong association between goals often may bring about goal conflict, which is aversive to the individual and hence may lower commitment to all the goals involved. Of course, the amount of conflict may vary depending on the degree to which attaining one goal serves as a means for attaining the other (see Sheldon & Emmons, 1995; Sheldon & Kasser, 1995). To the degree that it does, the conflict may be attenuated and goal commitment actually may be enhanced.

B. CHOICE OF MEANS

Equifinality, that is, the association of several means with the same goal, poses the problem of means choice. Presumably, individuals strive to choose the best available means for attaining the goal. This formulation, however, begs the question of how “best” is defined. In fact, the number of criteria whereby a means could be assessed as “best” could be quite considerable. To give a few examples, a means could be regarded as best because it most easily comes to mind, because it is most likely to bring about goal attainment, because it requires the least amount of effort, because it promises the most immediate attainment, or because it promises
the most enduring satisfaction. So when is each criterion applied? To answer this question, one must acknowledge that goals are rarely pursued in isolation. While phenomenally, an individual may be pursuing a single “focal” goal, the pursuit occurs within the context of fulfilling other activated goals that may or may not escape awareness and that represent a hidden or overt agenda the individual is also pursuing. Consider a situation in which the individual “chooses” between a simple and a complex message argument as two possible routes to persuasion. When the individual is fatigued, time pressed, or otherwise low on cognitive resources, he or she might opt for the simple heuristic over the complex argument, thus applying the “least effort” criterion. The simple heuristic in this case not only advances the focal goal of forming a judgment, but also advances the background goal of “conserving cognitive resources.”

In a classic study by Nisbett and Wilson (1977), passersby at a department store chose among four different nightgowns of similar quality or four identical pairs of nylon stockings. A strong position effect was found such that the rightmost object in the array was heavily overchosen. Nisbett and Wilson (1977) suggested that participants carried into the judgment task the consumers’ habit of “shopping around,” holding off on choice of early-seen garments on the left in favor of later-seen garments on the right. In other words, participants may have had two goals in this situation: (1) making a reasonable choice (this is a “focal” goal that would have been satisfied by any of the four objects in the array) and (2) reaching quick closure after the full array had been examined (this constituted a “background” goal). Both goals are satisfied by the rightmost object in the array, which indeed ends up being overchosen by a large margin. Interestingly, participants reported little, if any, awareness of this background goal, implying that background goals need not be salient to affect choice of means.

More generally, then, the means chosen is often that which maximizes attainment within the entire goal system: that is, a means characterized by multifinality. Note that a similar notion appears in Ajzen’s (1985, 1991) theory of reasoned action or planned behavior, namely, that a behavioral intention to perform a given activity is partially determined by the degree to which the activity is seen to advance various positive goals or promote various positive consequences. Indeed, the number of associations between a single activity and the attainment of different goals should determine the overall value of pursuing this activity This should be especially true when the activity is connected to the attainment of goals with unique value: that is, goals that are not themselves linked to the same higher order goal.

Recently, we (Shah and Kruglanski, 1999b) asked students to list two important attributes that could be attained by studying. They were then asked to assess the degree to which these attributes represented distinct goals. Controlling for the total subjective value of these attributes, it was
found that the degree to which these attributes represented different goals was positively related to participants' reported commitment to studying, suggesting that this commitment was strongest when studying was linked to different goals.

In a related study, we presented participants with the opportunity to play a hypothetical lottery in which they had a chance to win two prize packages (see Figure 7). The overall content of the prize packages were exactly the same, but in one condition the prizes were divided in such a way as to strongly invoke two different goals (i.e., one of the prize packages consisted entirely of items relating to fitness and the other consisted of items relating entirely to entertainment). In the other condition, the prizes were divided in such a way that neither goal was strongly invoked (i.e., each package contained a mixture of items relating to fitness and entertainment).

Participants were significantly more likely to play the lottery in the condition where two goals were strongly invoked by the manner in which the prizes were divided, even though the overall content of both prize packages was the same in both conditions and the participants understood that winning the lottery meant winning both packages.

In short, what constitutes the best means to a goal may be defined collectively in terms of the entire system of currently active goals. So, the more goals an activity is seen to fulfill, the more likely it is to be chosen. An intriguing implication of this notion is that as the set of active
background goals may shift imperceptibly from one context to the next, so may, unwittingly, the choice of the "best" means to a given "focal" goal or indeed the choice of a criterion for deciding what is "best" in a given context.

If one's choice and commitment to a means is dependent on both its connection to the focal goal and its connection to background goals, then the association between these goals could become a strong determinant of means choice. Specifically, if the focal goal is strongly associated with background goals, then its activation frequently would lead to activation of these other goals. The "best" means, then, often would be defined in terms of its fulfillment of the same set of background goals.

To illustrate the potential effects of these different associations, consider the following hypothetical experiment. In this study, participants initially are led to associate the goal of exercising with the goal of being social and the goal of looking good. At a later time they are asked to name their favorite way to exercise in a room with a pinup poster of an attractive person of the opposite sex (presumably invoking a personal appearance goal) or a poster relating to same-sex camaraderie (presumably invoking a "social bonding" goal). In the room with the pinup poster, participants may be more likely to choose an option such as lifting weights, whereas in the room with the "camaraderie" poster, they more readily may choose to name a team sport. Although both choices presumably do not involve conscious recognition of the influence of the poster, this effect may be moderated by the degree to which thinking about exercising is associated with a personal appearance goal versus a social bonding goal. In short, the association of a given means with focal as well as background goals and the activation of the background goals by the focal goal may all combine to affect the means choice, due to their prior association.

C. HOW MEANS ARE EXPERIENCED

The association between goals and means also may influence how a chosen means is experienced. This experience would be drawn primarily from the focal goal served by the means. Certainly, the strength of the association between the means and the focal goal increases the overall positivity of succeeding at the activity and the negativity of failing. The association between an activity and goal attainment is assumed to lend the activity positive value in proportion to goal magnitude, and the degree of association between an activity and attainment—failure will lend the activity negative value, again proportionate to goal magnitude. However, the association between goal and means may affect more than the general positivity or negativity of the means: it also may affect the type or quality of experienced affect while pursuing the given means. That is, specific
emotional experiences associated with goal attainment or attainment failure may be transferred to the means that serve these goals.

One example of this value transfer comes from work on promotion and prevention framing mentioned earlier. Higgins, Shah, and Friedman (1997) demonstrated that the same task, solving anagrams, can relate to different emotional experiences when associated with a promotion goal versus a prevention goal. A memory task was framed to relate to either a goal of promotion or a goal of prevention. In the promotion condition, participants were told that they would receive a payment of $5 for their participation, but they possibly could gain an additional $1. They would receive the extra $1 if their performance exceeded or equaled the 70th percentile of students who had participated in the study. In the prevention condition, participants were told that they would receive a payment of $6 for their participation, but they possibly could lose $1. They would not lose the $1 if their performance exceeded or equaled the 70th percentile of students who had participated in the study. Participants' level of happiness, dejection, quiescence, and agitation were measured before participants' completed the memory task and after completing the task and randomly receiving either success or failure feedback.

As shown in Table 2, success or failure at the anagram task led to more happiness or dejection, respectively, when it was associated with a promotion goal, but to more quiescence or agitation, respectively, when the task was associated with a prevention goal. How an activity was experienced, then, was a function of the regulatory qualities of the goal with which it was associated.

The strength of the association between goal and means also should affect the means' perceived intrinsicality, usually defined as the attribution that one is performing the activity for its own sake (see Deci, 1975; Deci & Ryan, 1985). The greater the association is between a goal and an activity, the more likely engagement in the activity will be seen as "the end itself," that is, the more likely it is that activity engagement will be experienced as goal fulfillment. This should be likely especially when the activity is not associated with other goals and the goal has no other means of attainment because, as noted earlier, the more singular the association between goal and means, the stronger this connection. These particular theoretical

<table>
<thead>
<tr>
<th>Regulatory focus framing</th>
<th>Cheerfulness—dejection</th>
<th>Quiescence—agitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotion</td>
<td>1.07</td>
<td>−.52</td>
</tr>
<tr>
<td>Prevention</td>
<td>.78</td>
<td>.68</td>
</tr>
</tbody>
</table>
predictions, however, remain speculative at present and are in need of further empirical validation.

D. MEANS SUBSTITUTION

Thomas Edison once commented on how often we are forced to consider other means to our goals: he claimed that he had never failed, but had just found 10,000 ways that did not work. Indeed, we are frequently thwarted in our initial efforts at goal attainment forcing us to resort to other means. In some respects, how we choose a substitute means is similar to how we chose the original means. In exercising choice, we select a specific activity out of several potential means to the same goal. In performing substitution, we initiate an alternate activity from the same set of original means after the original means has failed. In another sense, however, choice and substitution are quite different. The issue of choice depends on how the activities differ, so that a rational selection among them is possible. By contrast, substitution revolves on how the activities are the same, so that we can replace one with another.

Lewin (1935) addressed this latter issue when he specified the principles that guide our selection of replacements. He observed that the substitution of one activity for another was possible only if both arose from the same goal tension system. That is, both must ease the tension caused by the need underlying goal pursuit. According to Lewin, the “substitute value” of one task for another, then, depends on their dynamic connection within this system. From our structural perspective, the choice of a replacement means depends on its common association with goal attainment. Despite differences in content, an activity will be considered a substitute to the extent that it is associated with fulfillment of the same focal goal. So, activities that are very different in content (e.g., playing golf and sky diving) nevertheless would be seen as substitutable to the extent that they relate to the same goal (e.g., exercising). Likewise, activities that are very similar in some sense (e.g., showering and swimming) may, in fact, not replace each other when they are thought to relate to different goals (e.g., hygiene and fitness). What makes this particularly interesting is that the association between activities and goals is a matter of perception or mental representation, and thus it is highly sensitive to contextual variations, possibly altering the substitutability relationships between the same activities.

To illustrate this point empirically, we framed two instances of the same activity as relating to the same goal or to different goals. We then attempted to demonstrate that subsequent performance on the same task following initial success or failure would vary as a function of whether each instance was framed to relate to the same goal or different goals. Thus, two anagram sets were framed as having either the same regulatory focus
(i.e., a promotion focus or a prevention focus) or different regulatory foci (i.e., one task having a promotion focus and the second a prevention focus, or vice versa). Participants either succeeded or failed on the first task. Performance on the second task, controlling for actual performance on the first, served as the dependent measure. As you can see in Figure 8, success on the first task decreased performance on the second only when the second had the same regulatory focus framing, but not when the second had a different regulatory focus framing. Similarly, failure on the first task increased performance on the second when the second had the same regulatory focus framing, but not when it had a different focus framing, indicating that the substitutability of two instances of the same activity still depended on an association to the same underlying goal. This dependency raises the intriguing possibility that behaviors formerly found to be substitutable could, under certain circumstances, lose their substitutability. For instance, the work of Steele and Lui (1983) and that of Tesser, Martin, and Cornell (1996) suggest that various psychological phenomena such as dissonance and self-affirmation are, in fact, substitutable means for attaining or maintaining self-esteem (see Figure 9). This is so presumably because the abstract goal of self-esteem maintenance is activated for participants in this research. However, is the self-esteem goal invariantly activated for all individuals? Our analysis that views goals as knowledge structures (Kruglanski, 1996) suggests that this need not be the case and that the activation of any given goal could vary from context to context.

According to this analysis, it should be possible in principle to activate just the concern with dissonance reduction or just the concern with self-affirmation without activating the abstract, self-esteem maintenance
goal (see Figure 10). This should reduce the substitutability relationship among all of these phenomena. That is, the range of substitutable mechanisms should be reduced to those relating to the more concrete subgoal rather than all the mechanisms relating to the abstract goal of self-esteem maintenance. These possibilities as well could be profitably explored in future research.

Having identified the range of substitutable alternatives based on their common connection to the focal goal, the specific choice one makes among these alternatives also may depend on their lateral association with the

FIGURE 9 Substitutability of means of self-esteem maintenance.

FIGURE 10 Substitutability of dissonance reduction means.
initial choice and on their association to the same background goals fulfilled by the initial choice. Returning to an earlier example, if one chooses to go home by jogging, but cannot find her running shoes, she may opt to walk rather than take a cab because the former option also satisfies the background goal of "getting some air."

III. INDIVIDUAL DIFFERENCES IN THE STRUCTURE OF GOALS AND MEANS

Having discussed the manner and consequences of differences in the structure of goal networks, we now turn to why these differences arise. That is, what factors may lead individual goal structures to differ from one another? We consider three such factors: (1) differences in motivational orientation, (2) differences in goal content, and (3) differences in regulatory experiences.

A. DIFFERENCES IN MOTIVATIONAL ORIENTATION

Goals can be seen as the cognitive link between our general motives and specific behaviors. In fact, goals mediate the fulfillment of many different needs (for a review, see Austin & Vancouver, 1996). These needs, in turn, may give rise to quite different goal structures. For instance, the goals that arise to fulfill our need for achievement may be much more complexly structured than the goals that arise to fulfill our need for basic safety concerns.

Individuals also can differ in their chronic orientation toward fulfilling these different needs. So while one individual may consistently focus on fulfilling his or her need for achievement, another may focus on his or her need for safety. These differences in orientation may result in chronic differences in individuals' goal structure.

Differences in Regulatory Focus

As one example of how motivational orientation may affect goal structure, consider how individuals might differ in terms of their focus on promotion versus prevention. According to regulatory focus theory (Higgins, 1996), an individual is thought to have both a promotion goal system consisting of "ideal" goals pursued for the sake of gaining rewards or attaining nurturance, and a prevention goal system of "ought" goals pursued to gain safety or security.

We (Shah and Kruglanski, 1999c) explored how this fundamental distinction in the regulatory purpose of goals affects their association to each other and to the means by which they would be attained.
Because oughts goals involve issues of safety and security, it was suspected that they should be less relatively substitutable by other ought goals than ideal goals would be with other ideals. As a consequence of their greater substitutability and hence activation in the same circumstances, ideals could come to be associated more strongly with other ideals than may oughts with other oughts. After all, when it comes to security, one is only as safe as his or her weakest link and therefore must cover all bases rather than substitute one responsibility for another. To provide a concrete example, one could not expect that fulfilling one of the biblical commandments could substitute for failing to obey another. It was suspected additionally that because duties and obligations may be perceived as necessities that need to be attained, one might be hesitant to try new means of attainment, because to do so would entail some risk. Instead one may choose to fulfill these goals by “tried and true” methods, resulting in less associations between these goals and different activities.

By contrast, promotion goals or ideals are all aimed at attaining a sense of nurturance or well-being; hence, they should be relatively substitutable for each other. Furthermore, because ideals may not be experienced as dire necessities the way oughts may be, they may allow exploration and hence come to be associated with a greater number of means potentially leading to their attainment.

In short, we predicted that “ideal” goals would be associated more strongly with other ideals than would oughts be associated with other oughts, and that, additionally, ideal goals typically would be linked to a greater number of means than would ought goals. To test these notions, we asked participants in one study to list two important ideals and two important obligations that they currently were pursuing and indicate their degree of success in accomplishing each of these pursuits. Participants then listed all the different ways they could attain each of the two ideals and each of the two oughts. Finally, participants completed a lexical decision procedure, identical to the one described earlier, in which, after first seeing a prime word, they were asked to determine whether or not a target word was an attribute or an activity. The participants’ stated ideals and oughts were included as both prime words and target words. We found that reaction times when ideals primed other ideals were quicker than when obligations primed other obligations and when a control word primed an ideal or an ought (see Figure 11). We also found that participants listed more different ways to attain their ideal goals than their ought goals (see Figure 12).

Higgins and his colleagues (Higgins et al., 1997; Shah, Higgins, & Friedman, 1998) also proposed that individuals differ in their general orientation toward fulfilling their prevention and promotion goals. Given our results, it is likely that these differences in chronic regulatory focus
would be manifest in the structure of individuals' chronically accessible goals. This intriguing idea awaits future study.

Differences in Epistemic Motivation

Another motivational orientation that may influence goal structure is the need for closure (Kruglanski, 1989, 1990). The need for (nonspecific) cognitive closure is defined as a desire for a definite answer, any firm answer, rather than uncertainty, confusion, or ambiguity. The strength of this desire is a function of the benefits associated with possessing closure and the costs associated with lacking it. The need for closure, like other motivations, can vary across individuals and situations. The need for answers can be applied to the regulatory decisions inherent in goal pursuit: specifically, one's choice of means. If one assumes that means choice
becomes more difficult as more options are available, a need for closure may decrease the number of attainment options considered for goal attainment. Individuals with a high need for closure, then, may have goal networks with fewer attainment options that allow for quicker and more permanent regulatory decisions. Indeed, Shah and Kruglanski (1999a) found that individuals high in dispositional need for closure (see Webster and Kruglanski, 1994) list significantly fewer different means for attaining their personal goals.

B. DIFFERENCES IN PERSONAL GOAL CONTENT

The content of individuals' personal goals may differ on a number of different fundamental dimensions. For instance, a given individual may set higher (i.e., harder) goals than another or may have goals to attain more immediately or with less effort. All of these differences may have implications for how goals are structured. Take, for example, the issue of goal difficulty. Multiple means for goal attainment may be useful when goal attainment is uncertain, but distracting when goal attainment is relatively easy. An individual with difficult goals may, therefore, be more motivated to generate multiple attainment means.

In another study, we asked students to list several life goals and to rate them on difficulty of attainment. When asked to generate as many means as they could think of to attain each goal, we found that the number of means was positively related to their initial ratings of goal difficulty. Apparently, the more difficult the goal, the greater the participants' tendency to generate a larger set of means as a "backup" in case any one of them fails.

C. DIFFERENCES IN REGULATORY EXPERIENCE

Many goals, especially important ones, are not attained immediately, and much can be learned from one's goal attainment efforts. Indeed, as one continues to work toward a goal despite initial failure, he or she may become aware of other options or paths to success. One may learn, then, from post regulatory experiences, which would allow one to see other attainment means not initially recognized. This may be particularly true when one has had little history of success in working toward goal attainment. For instance, researchers have noted that a greater number of counterfactuals (i.e., possible means) are generated in response to task failure as opposed to task success (Roese & Hur, 1997; Sanna & Turley, 1996). Thus, individuals with long histories of striving for a specific goal may be expected to have connections to more possible attainment means than individuals who have adopted this goal only recently.
As we have implied, the proposed goal network model is consistent with other cybernetic perspectives on goal system, but extends them to consider the fundamental ways in which goal systems differ. For instance, although Carver and Scheier (1981) proposed a hierarchical goal model of self-regulation, they are largely silent on the self-regulatory implications of individual differences in the structure of this hierarchy (see also Powers, 1973, 1989; Thagard & Millgram, 1995).

A number of researchers, however, have assumed that, like one's self-concept (Barron, 1953; Linville, 1982, 1986), one's personal goal system can differ in complexity, and these differences can have implications for how goal attainment or failure is experienced emotionally. For instance, Neidenthal, Setterlund, and Wherry (1992) found that personal goal complexity mediated affective reactions to evaluative feedback about future goals in much the same manner as self-complexity mediated reactions to feedback about one's present self. That is, the more differentiated one's goal system, the more tempered one's emotional reactions. Emmons and King (1992) elaborated on this notion of differentiation by distinguishing differentiation within goals from differentiation between goals. Whereas differentiation within goals was defined as the number of different ways a goal could be attained, differentiation between goals was defined as the degree to which goals within a system are similar to each other, or help attain one another. Emmons and King (1989) suggested that both structural differences were important for predicting emotional experience, finding that emotional extremity was positively associated with differentiation within goals, but negatively associated with differentiation between goals.

These approaches are similar to the present model in that they consider the nature and consequences of structural differences in personal goal systems. However, the present model expands on these earlier perspectives in three significant ways: (1) Our model considers a wider range of possible goal–means associations such as the distinction between the goal–means association and the means–goal association. (2) It more broadly defines the reasons for these associations. That is, although associations between goals or between means may arise because of perceptions of similarity or mutual facilitation, they also may arise for other reasons that link cognitive structures such as their simultaneous activation in common situations (e.g., relaxing and studying are both things one can do when home). Finally, (3) our model considers how these associations have consequences that precede the emotional experience of goal attainment or failure. By considering how these associations affect issues such as means choice and substitution, the model illustrates the effects of goal structure on multiple levels of goal regulation.
V. FUTURE DIRECTIONS: INTERPERSONAL GOALS

It is also of interest to consider the potential social psychological implications of our goal networks theory. It is often the case, for instance, that other people constitute the goals of our strivings in some sense or, in other cases, they may represent means to further goals. We may, for example, strive for the respect or the affection of our parents or for a special “other” to find us attractive. To attain these ends, we may perform various activities: for example, strive for academic success to please our parents or work out at the gym to become more attractive to other people.

Again, the abstractness of our social goal should define the range of substitutable behaviors. For instance, if one’s goal was to be more attractive generally, such a goal might be activated by the presence of any member of the opposite sex, whereas if one’s goal was specific to a certain significant other, it might be activated only in their presence or impending arrival.

Beyond representing interpersonal goals, other people often may constitute the means to goal attainment. For example, other people may be the means to attaining one’s objectives of feeling “powerful,” “gifted,” or “appealing”; they may constitute social mirrors that reflect one’s various desired attributes and thus serve as comparison standards to assess progress. Depending on various goal attributes, one could generate several or only a few such means, and this could have important implications for their substitutability or perceived interchangeability. For example, a rather abstract goal such as being “friendly” could be gratified by virtually any person one might encounter, whereas a more specific (concrete) goal of “having a circle of friends” may be gratified by a much more restricted set of people. In turn, the greater the number of people seen as potential means of gratifying one’s goal, the greater their “functional equivalence” or mutual substitutability and the less their unique attachment to the goal. The present theory of goal network, then, may furnish a useful conceptual tool not only for understanding individual goal pursuit, but also for gaining insights into our interpersonal relationships with others by addressing our significant interpersonal goals or significant means to goal attainment.

VI. CONCLUSION

Our structural theory of goal networks attempts to illustrate how goals and means may relate to each other and the implications of these associations for a number of important regulatory phenomena. Specifying the fundamental ways in which goals may differ in content has proven very useful for understanding the subjective experience of specific goal attainment or discrepancy (see Cantor et al., 1987; Dweck & Legget, 1988;
We believe that the structural level of analysis lends new insights into how goals are chosen, pursued, experienced, and replaced that are not readily explained by differences in goal content alone.

Whereas previous treatments and theories have alluded to issues of equifinality, substitution, choice, etc. (e.g., Fein & Spencer, 1997; Festinger, 1957; Freud, 1920/1948; Lewin, 1935; Solomon, Greenberg, & Pyszczynski, 1991), they typically have done so in the context of specific motivational concerns or specific goals an individual may choose to pursue. In contrast, our structural analysis attempts to consider the properties of goal networks that transcend specific differences in motivation or goal content.

A promise of this general approach, therefore, lies in its integrative potential and in the general understanding it may foster for a wide range of significant and seemingly disparate psychological phenomena.

REFERENCES

Ryan, R. M., Sheldon, K. M., Kasser, T., & Deci, E. L. (1996). All goals are not created equal. In P. M. Gollwitzer & J. A. Bargh (Eds.), *The psychology of action: Linking cognition and motivation to behavior* (pp. 7–26). New York: Guilford Press.

